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A B S T R A C T

Three new 7-oxoabietane-type diterpenoids, 3-oxosugiol methyl ether (1), 18-hydroxysugiol (2), and 1β-hy-
droxysugiol (3), as well as two known 7-oxoabietane-type diterpenoids, 6α-hydroxysugiol (4) and 6α-acetox-
ysugiol (5), were isolated from the bark of Cryptomeria japonica D. Don. Their structures were elucidated mainly
by NMR and HREIMS, as well as on comparison with the data of known analogues. At the concentration of
75 μM, compounds 2 and 5 exhibited 11.9 and 21.7% xanthine oxidase inhibitory activity, respectively.

1. Introduction

The genus Cryptomeria (Cupressaceae) comprises of only one spe-
cies, Cryptomeria japonica D. Don, which is endemic to Japan, known as
sugi (Japanese cedar) in Japanese and has been widely cultivated as an
important plantation coniferous tree species in Taiwan since 1906. C.
japonica is a massive evergreen coniferous tree, growing up to in height.
Its wood has been used as a building material for Japanese-style houses
and other wood products due to the aromatic, soft, lightweight but
strong, waterproof, and reddish-pink in color properties. Diverse ter-
penoids, including monoterpenoids, sesquiterpenoids, and diterpenoids
(Arihara et al., 2004a, 2004b; Chen et al., 2001; Kofujita et al., 2001,
2002; Morita et al., 1995; Nagahama and Tazaki, 1993; Nagahama
et al., 1993, 1996a, 1996b, 1998; Narita et al., 2006; Shibuya, 1992;
Shieh et al., 1981; Shimizu et al., 1988; Su et al., 1993, 1994a, 1994b,
1995a, 1995b, 1996; Morisawa et al., 2002; Yoshikawa et al., 2006a,
2006b) were isolated from the leaves, heartwood, and barks of this
plant, some of which possess antibacterial (Li et al., 2008), antifungal

(Kofujita et al., 2001), cytotoxic (Kofujita et al., 2002), anti-in-
flammatory (Shyur et al., 2008), anti-androgenic (Tu et al., 2007), and
insect antifeedant (Wu et al., 2008), and repellent (Morisawa et al.,
2002) properties. While searching for the new chemical ingredients of
the bark of C. japonica, we have already reported the isolation of a
cytotoxic sesquarterpene (C35), cryptotrione, with an unprecedented
skeleton possessing a conjugated 7-oxoabietane and cadinane (Chen
et al., 2010), ten 7-oxoabietane-type diterpenoids (Chang et al., 2016;
Chang et al., 2017a,b), and two sesquarterpenoids (Chang et al.,
2017c). Herein, we report the isolation and structure elucidation of
three new 7-oxoabietane-type diterpenoids (Fig. 1) and their xanthine
oxidase inhibitory activity.

2. Results and discussion

A methanol extract of the bark of C. japonica was suspended in H2O
and then partitioned successively with EtOAc and n-BuOH.
Fractionation of the EtOAc soluble portion by silica gel column
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chromatography followed by purification using semipreparative NP-
HPLC yielded three new 7-oxoabietane-type diterpenoids, 12-methox-
yabieta-8,11,13-trien-3,7-dione (1), 18-hydroxysugiol (2), and 1β-hy-
droxysugiol (3), together with two known 7-oxoabietane-type diterpe-
noids, 6α-hydroxysugiol (4) (Fang et al., 1993) and 6α-acetoxysugiol
(5) (Kuo et al., 1975) (Fig. 1).

Theof 1 gave a molecular ion at 328.4509, establishing the mole-
cular formula of 1 as C21H28O3, with eight degrees of unsaturation. The
UV maximum (278 nm) and IR absorptions (1672, 1600, and 1500 cm1)
of 1 indicated the presence of the benzoyl moiety (Kuo and Yu, 1996).
An IR absorption for an isolated ketone carbonyl group (1706 cm1) was
also observed. The resonances in the 1H NMR spectrum of 1 (Table 1)
for three tertiary-linked methyls [H 1.13, 1.19, and 1.45 (each 3H, s,
Me-18, Me-19, and Me-20], two para-oriented aromatic protons [H 6.68

(1H, s) and 7.89 (1H, s)], one set of ABX coupling system neighboring to
the carbonyl group [H 2.31 (1H, dd, 14.0, 4.0 Hz), 2.58 (1H, dd, 17.6,
4.0 Hz), and 2.75 (1H, dd, 17.6, 14.0 Hz)], an isopropyl group [H 1.19
(3H, d, J =6.8 Hz), 1.21 (3H, d, J =6.8 Hz), and 3.26 (1H, sept, J
=6.8 Hz)], one methoxy group [H 3.88 (3H, s)], and a typical down-
shifted Hβ-1 signal at H 2.60 (1H, m) suggested that 1 was a dehy-
droabietane diterpene (Kuo and Yu, 1996). The 13C NMR and DEPT
spectra spectrum of 1 indicated the presence of 21 carbons, consisting
of five methyl, three aliphatic methylene, two aliphatic methine, two
aliphatic quaternary, two olefinic methine, four quaternary olefinic,
two carbonyl, and one methoxy carbons. The 1H and 13C NMR data of 1
were similar to those of sugiol methyl ether (Kuo and Yu, 1996), the
major differences were the 13C NMR chemical shifts of C-1∼C-4, Me-
18, Me-19, and Me-20 in ring A. The HMBC correlations between H-2 (H
1.51)/C-3 (C 214.1) and Me-19/C-3 (Figure 3) indicated an isolated
ketone carbonyl located on C-3. From the above evidences, compound 1
was thus formulated as 12-methoxyabieta-8,11,13-trien-3,7-dione and
given the trival name 3-oxosugiol methyl ether. Compound 1 had been
synthesized by Burnell and Caron (1992)and was isolated from the
natural source for the first time.

The UV maximum (284 nm) and IR absorptions (1646, 1593, and
1460 cm1) of 2 indicated the presence of the benzoyl moiety (Kuo and
Yu, 1996). An IR absorption at 3383 cm−1 for hydroxyl group was also
observed. The molecular formula was established to be C20H28O3 from
itsmolecular ion at 316.4389 and its 13C NMR data, indicating seven
degrees of unsaturation. The 1H NMR spectrum of 2 (Table 1) showed
resonances for two tertiary-linked methyls [H 0.88, and 1.18 (each 3H,
s, Me-19, and Me-20], two para-oriented aromatic protons [H 6.67 (1H,
s) and 7.83 (1H, s)], an isopropyl group [H 1.19 (3H, d, J =6.8 Hz),
1.21 (3H, d, J =6.8 Hz), and 3.13 (1H, sept, J =6.8 Hz)], an AB-type
oxymethylene [H 3.12 (1H, d, 11.2 Hz) and 3.42 (1H, d, 11.2 Hz)], and
a typical downshifted Hβ-1 signal of dehydroabietane diterpene at H

2.12 (1H, br d, J =13.2 Hz). With the aid of 1H-1H COSY, one set of
ABX coupling system neighboring to the carbonyl group [H 2.17 (1H,
dd, 11.2, 7.2 Hz), 2.56 (1H, m), and 2.57 (1H, m)] was also found. 20
carbon signals were observed in the 13C NMR spectrum of 2 and were

Fig. 1. Structures of compounds 1–5.

Table 1
1H NMR data for compounds 1–3. (CDCl3, in ppm, J in Hz, 400MHz for 1H NMR, 100MHz for 13C NMR).

1 2 3

No. δC δH δC δH δC δH

1 37.0 2.04 t d (13.2, 5.2) α,
2.60 m β

37.4 1.74m α,
2.12 br d (13.2) β

77.2 3.97 dd (9.2, 6.8)

2 34.6 2.53 ddd (15.2, 5.2, 3.2) β,
2.87 m α

18.3 1.67m β,
1.73 m

29.9 1.79m,
1.80 m

3 214.1 34.7 1.34m β,
1.50 dt (12.8, 4.0) α

39.2 1.39m β,
1.51 dt (13.2, 3.2) α

4 47.4 37.7 33.2
5 49.6 2.31 dd (14.0, 4.0) 42.5 2.17 dd (11.2, 7.2) 48.5 1.82 m
6 36.2 2.58 dd(17.6, 4.0) α,

2.75 dd(17.6, 14.0) β
35.7 2.56m, 2.57 m 35.7 2.63m, 2.64 m

7 196.7 198.4 198.0
8 123.6 123.9 124.6
9 153.4 156.1 154.7
10 37.8 37.5 43.8
11 104.7 6.68 s 109.7 6.67 s 112.4 7.68 s
12 161.6 158.7 158.1
13 135.9 132.8 133.0
14 125.6 7.89 s 126.4 7.83 s 126.3 7.85 s
15 26.6 3.26 sept (6.8) 26.8 3.13 sept (6.8) 26.8 3.16 sept (7.2)
16 22.5 1.19 d (6.8) 22.4 1.21 d (6.8) 22.3 1.21 d (7.2)
17 22.4 1.21 d (6.8) 22.5 1.19 d (6.8) 22.4 1.21 d (7.2)
18 25.1 1.13 s 70.7 3.12 d (11.2), 3.42 d (11.2) 32.0 0.90 s
19 21.6 1.19 s 17.4 0.88 s 21.1 0.97 s
20 22.7 1.45 s 23.7 1.18 s 16.6 1.22 s
-OCH3 55.5 3.88 s

Coupling constants are presented in Hz.
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differentiated by DEPT experiments as four methyl, four aliphatic me-
thylene, 2 aliphatic methine,two aliphatic quaternary, one oxygenated
methylene, two olefinic methine, four quaternary olefinic, and one
carbonyl carbons. The 1H and 13C NMR data were similar to those of
known compound, sugiol (Marcos et al., 2010). By comparing the 13C
NMR data of 2 with that of sugiol, the major differences were the 13C
NMR chemical shifts of C-3∼C-5, Me-18, and Me-19 in ring A. The
HMBC correlations between H-18 (H 3.12)/C-4 (C 37.7) and H-18/C-5 (C
42.5) and NOESY correlation between H-18/H-5 (H 2.17) suggested that
the hydroxyl group was attached on C-18 (Fig. 2). From the above
evidences, compound 2 was thus formulated as 18-hydroxysugiol (2).

The molecular formula of 3 was assigned as C20H28O3 byat
316.4399, representing seven degrees of unsaturation. The IR absorp-
tions indicated the presence of hydroxyl (3303 cm1) group and benzoyl
moiety (1653, 1600 and 1460 cm1). The UV absorption band at 290 nm
was further confirmed the benzoyl moiety. The 1H NMR spectrum of 3
(Table 1) displayed the signals for three tertiary-linked methyls [H 0.90,
0.97, and 1.22 (each 3H, s, Me-18, Me-19, and Me-20], one oxymethine
[H 3.97 (1H, dd, J = 9.2, 6.8 Hz, H-1)], two para-oriented aromatic
protons [H 7.68 (1H, s) and 7.85 (1H, s)], and an isopropyl group on the
benzene ring [H 1.21 (6H, d, J =6.8 Hz) and 3.16 (1H, sept, J
=6.8 Hz)]. An ABX coupling system [H 1.82 (1H, m), H 2.63 (1H, m),
and 2.64 (1H, m)] was also assured by their 1H-1H COSY correlations.
Similarities in the 1H and 13C NMR spectroscopic data hinted that 3
should be an analogue of 2. The absence of a typical Hβ-1 of

dehydroabietane diterpene, replacing by an oxymethine [H 3.97 (1H,
dd, J = 9.2, 6.8 Hz, H-1)], along with a downshifted H-11 proton signal
[H 7.68 (1H, s)] hinted that the hydroxyl group was located at C-1
(Abdul-Wahab et al., 2012). Furthermore, the HMBC correlations be-
tween H-1 (H 3.97)/C-9 (C 154.7) and C-20 (C 16.6) and NOESY cor-
relation between H-1/H-5 (H 1.82) confirmed that the hydroxyl group
was attached on C-1 inβ-equatorial orientation (Fig. 2), which caused
the downshifted H-11 at H 7.68. Thus, compound 3 was identified as 1β-
hydroxysugiol.

Compounds 1-5 were evaluated their xanthine oxidase inhibitory
activity (Chen et al., 2009). At the concentration of 75 μM, compounds
2 and 5 exhibited 11.9 and 21.7% xanthine oxidase inhibitory activity,
respectively, while compounds 1, 3, and 4 were inactive.

3. Experimental

3.1. General experimental procedures

Optical rotations were obtained with a Jasco-DIP-180 polarimeter.
UV and IR spectra were recorded on a Shimadzu UV-1601PC and a
Perkin-Elmer 983 G spectrophotometer, respectively. 1H and 13C NMR
and 2D NMR spectra were recorded on a Varian-Unity-Plus-400 spec-
trometer with residual solvent signals as internal reference. EI-MS and
HR-EI-MS were determined on a Jeol-JMS-HX300 mass spectrometer.
Column chromatography (CC) was carried out with Silica gel mesh;

Fig. 2. Selected HMBC and NOE correlations of 1–3.
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Merck & Co., Inc.). Thin-layer chromatography (TLC) was performed on
pre-coated silica gel plates (silica gel 60 F254; Merck & Co., Inc.). Semi-
preparative HPLC was performed using a normal phase column
(Purospher STAR Si, 5 μm, 250×10mm; Merck & Co., Inc.) on a LDC
Analytical-III system.

3.2. Plant Material

The bark of C. japonica D. Don was collected in Sitou, Taiwan in.
The plant material was identified by Dr. Yen-Hsueh Tseng, Department
of Forestry, National Chung-Hsing University (NCHU). A voucher spe-
cimen (TCF13443) has been deposited at the Herbarium of the
Department of Forestry, NCHU, Taiwan.

3.3. Extraction and Isolation

The air-dried bark of C. japonica (16.0 kg) was extracted by ma-
ceration with MeOH (100 L) three times (7 days each time) at room
temperature. After filtration and evaporation, the crude extract (480 g),
was suspended in H2O (1 L) and partitioned between H2O and EtOAc
(1 L) for three times. The EtOAc soluble fraction (430 g) was subjected
to a silica gel (4.0 kg) column, eluted with n-hexane–EtOAc and
EtOAc–MeOH mixtures with increasing polarity to yield 11 fractions.
Fr. 4 from n-hexane–EtOAc (4:1) elution (92.4 g) was further purified
through a silica gel column (7×60 cm), eluted with a gradient mixture
of CH2Cl2–EtOAc (100:1 to 0:1) to obtain sixteen fractions, 4A－4 P.
Further purification of subfraction 4C (0.9 g) by HPLC gave 5 (3.2 mg,
tR =18.1 min) using n-hexane–EtOAc (4:1). Subfraction 4 G (1.6 g) by
HPLC afforded 1 (1.5 mg, tR =46.2 min) using n-hexane–EtOAc (4:1).
Fr. 5 from n-hexane–EtOAc (7:3) elution (21.6 g) was further purified
over a silica gel column (5× 45 cm), eluted with n-hexane2Cl2－EtOAc
(8:8:1 to 0:1:1) to yield fifteen fractions, 5A－5O. Further purification
of subfraction 5E (1.2 g) by HPLC gave 4 (12.9mg, tR =38.1 min)
using n-hexane–EtOAc (7:3). Subfraction 5 F (2.0 g) by HPLC gave 2
(2.5 mg, tR = 43.1min) and 3 (1.9 mg, tR = 46.1min) using n-
hexane–EtOAc (7:3).

3.3.1. 12-Methoxyabieta-8,11,13-trien-3,7-dione (1)
Gum; [α] 25

D = +3.5 (c 0.4, CHCl3); IR (dry film) νmax 1706, 1672,
1600, 1500, 1460, 1288, 1255, 1175, 1029 cm1; UV (MeOH) λmax (log
ε) 229 (4.69), 278 (4.58) nm; 1H and 13C NMR data, see Table 1; EI-MS
(%) 328 (M+, 71) [M]+, 313 ([M3]+, 100), 271 (7), 243 (9), 125 (7).
HR-EI-MS [M]+ 328.4509 (calcd for C21H28O3 328.4504).

3.3.2. 18-Hydroxysugiol (2)
Gum; [α] 25

D = +1.8 (c 0.25, CHCl3); IR max 3383, 1646, 1593,
1460, 1381, 1308, 1268, 1182, 1043 cm1; UV (MeOH) λmax (log ε) 232
(3.82), 284 (3.75) nm; 1H and 13C NMR data, see Table 1; EI-MS (%)
316 (41) [M]+, 301 ([M3]+, 24), 283 ([M3―H2O]+, 30), 243(17), 215
(24), 203 (100), 59 (47), 55 (32). HR-EI-MS [M]+ 316.4389 (calcd for
C20H28O3 316.4394).

3.3.3. 1β-Hydroxysugiol (3)
Gum; [α] 25

D = +30.5 (c 0.32, CHCl3); IR max 3303, 1653, 1600,
1566, 1460, 1381, 1301, 1268, 1182, 1009, 897 cm1; UV (MeOH) λmax

(log ε) 232 (4.28), 290 (4.22) nm; 1H and 13C NMR data, see Table 1; EI-
MS (%) 316 (100) [M]+, 301 ([M3]+, 91), 283 ([M3―H2O]+, 16), 257
(38), 217 (46), 201 (44), 175 (43). HR-EI-MS [M]+ 316.4399 (calcd for
C20H28O3 316.4394).

3.4. Xanthine oxidase inhibition assssay

The xanthine oxidase inhibitory activity was carried out using the
method of Chen et al. with some modifications (Chen et al., 2009). In
brief, 35 μL of 0.1mM phosphate buffer (pH=7.5), and 30 μL of en-
zyme solution (0.01 units/ml in 0.1mM phosphate buffer, pH=7.5)

solution was added to 20 μL of the sample solution (final concentration
was 75 μM). After preincubation at 25 °C for, the reaction was initiated
by the addition of 60 μL of substrate solution (150mM xanthine in the
same buffer). The solution was mixed thoroughly by vortexing and
preincubated for 30min at 25 °C, and then 60 μL of substrate solution
(150mM xanthine in the same buffer) was added. The reaction mixture
was incubated for further 30min at 25 °C, and the absorbance was
measured at 290 nm. The percentage activity of xanthine oxidase was
calculated according to the following equation: (1-B/A) × 100, where
A and B are the activities of the enzyme without and with test sample.
Quercetin, a known inhibitor of xanthine oxidase, was used as a posi-
tive control, whereas negative control was performed without any in-
hibitor.
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