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Abstract: Agathis species are widely distributed around Southeast Asia, Australasia, South Pacific
islands, and etc. Traditionally, Agathis species have been used as the folk medicines, the common
ethnopharmacological uses of Agathis genus are the treatments of headache and myalgia. This study
aims to investigate the chemical composition of Agathis dammara (Lamb.) Rich. leaf essential oil and
to explore its antimelanogenesis effect. The chemical constituents of leaf essential oil are analyzed
using gas chromatography-mass spectrometry (GC-MS), the major constituents of leaf essential oil are
sesquiterpenoids. The major constituents are δ-cadinene (16.12%), followed by γ-gurjunene (15.57%),
16-kaurene (12.43%), β-caryophyllene (8.58%), germacrene D (8.53%), and γ-cadinene (5.33%). As for
the in vitro antityrosinase activity, leaf essential oil inhibit the tyrosinase activity of mushroom when
the substrate is 3,4-dihydroxyphenylalanine (L-DOPA). Leaf essential oil prevents tyrosinase from
acting as diphenolase and catalyzing L-DOPA to dopaquinone, and converting into dark melanin
pigments. A. dammara leaf essential oil also exhibits the in vivo antimelanogenesis effect, leaf essential
oil reduces 43.48% of melanin formation in zebrafish embryos at the concentration of 50 µg/mL.
Results reveal A. dammara leaf essential oil has the potential for developing the skin whitening drug
and depigmentation ingredient for hyperpigmentary disorders.

Keywords: Agathis dammara; antimelanogenesis effect; antityrosinase activity; essential oil; melanin;
zebrafish (Danio rerio)

1. Introduction

Araucariaceae is an ancient family and widespread in the Jurassic period, distribution
in both hemispheres including numerous taxa. Araucariaceae species are present in South
America, Australasia, South Pacific islands, Southeast Asia and etc. Araucariaceae family
contains four genera, including Agathis, Araucaria, Columbea, and Wollemia, com-monly
known as kauri or dammar. The ethnopharmacological uses of the Araucariaceae family
are versatile and numerous, including emollient and antiseptic properties, and to treat
headache, myalgia, respiratory infections, rheumatisms, skin wounds, insomnia, and so
on [1–5].

Genus Agathis are widely distributed in Australia, New Zealand, South Pacific islands,
and Southeast Asia, the species are characterized by their brownish black bark, leathery and
ovate-lanceolate leaves, circular branch scars on their trunks, and their milky resins. Agathis
genus contains 18 accepted species and 4 unresolved species [1–4]. To date, the timbers of
Agathis spp. are recognized as good materials for processing, the timber is straight-grained,
heavier and harder wood, knot free, with a fine textured and lustrous surface [3]. Gum
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copal is harvested by tapping or cutting the living Agathis trees. Resins and gums from
Agathis spp. have been used as varnishes, lacquers, adhesive, and etc. [1,5]. According
to the related research reports, α-pinene, β-pinene, camphene, α-copaene, α-cubebene, β-
caryophyllene, δ-cadinene, allo-aromadendrene, aromadendrene, germacrene D, limonene,
myrcene, sabinene, spathulenol, and 16-kaurene are the most abundant constituents found
in the essential oils of Agathis species [2,3]. The biological activities of genus Agathis include
antibacterial, antifungal, anti-inflammatory, antileishmanial, antiplasmodial, cytotoxic
activities, etc. in literatures [3,5–8]. Verma et al. investigated the antibacterial activity of
resin essential oil from A. robusta (C. Moore ex F. Muell.) Bailey (Queensland Kauri), resin
essential oil showed moderate activity against Staphylococcus epidermidis and good activity
against S. aureus in the disc diffusion assay [5]. The leaf essential oil of A. dammara (Lamb.)
Rich. was also found to have significant antibacterial activity against Staphylococcus aureus
(Gram positive bacterium) and Pseudomonas aeruginosa (Gram negative bacterium) in the
disc diffusion method and microwell dilution assay [6]. A. atropurpurea B. Hyland bark resin
exhibited effective antileishmanial activity against Leishmania amazonensis promastigotes
and amastigotes [7]. Resins from A. atropurpurea showed slight antifungal activity against
Aspergillus niger and Rhizopus stolonifera, which are the important and widespread human
and agricultural harmful pathogens [8].

Melanin, the products of melanogenesis, is produced in melanocytes and stored in
melanosomes. Normally, melanin prevents skin from ultraviolet (UV) damage, photocar-
cinogenesis, and interference of vitamin D3 formation [9–12]. However, abnormal melanin
production and accumulation could induce hyperpigmentation (age spots, freckles and
melasma), and melanoma, the skin tumor [9,13–15]. In order to prevent from hyperpigmen-
tation, suppressing tyrosinase activity is one of the most effective strategies. Tyrosinase
(EC 1.14.18.1), a copper containing enzyme, is a key enzyme in melanogenesis. The site of
copper ion pair (central domain) coordinating with 6 histidine residues formed an active
site of tyrosinase [9,16,17]. Depending on the substrates binding to the active site, tyrosi-
nase catalyzes two reactions. When tyrosinase binds with L-tyrosine (monophenol), it
acts as monophenolase and helps hydroxylation of L-tyrosine. When tyrosinase (diphe-
nolase) binds with 3,4-dihydroxyphenylalanine (L-DOPA), further oxidizes of L-DOPA to
dopaquinone occurs, and leads to the formation of eumelanin and pheomelanin [16–18].

Currently, the well-known ingredients, hydroquinone, kojic acid, ascorbic acid, and
arbutin, prevent L-tyrosine or L-DOPA converting to dopaquinone by inhibiting tyrosinase
activity [17,19,20]. These compounds may bring about some disadvantages. For example,
hydroquinone could cause skin irritation and cell mutation; kojic acid is carcinogenic;
ascorbic acid and arbutin has poor storability [14,17,21–23]. Due to the drawbacks and
obstacles, alternatives from natural sources have been increasingly researched [24–29].
Elaeocarpus serratus Linn. (Tiliaceae) leaf extract and its active compounds, gallic acid,
myricetin and mearnsetin, present tyrosinase inhibitory activity and antimelanogenesis
effect on zebrafish (Danio rerio) embryos [25]. Tetrahydrocurcumin, 1,7-bis(4-hydroxy-3-
methoxyphenyl)heptane-3,5-dione, is the metabolite of curcumin, derived from the Curcuma
longa L. rhizome. Tetrahydrocurcumin can inhibit the melanin production in B16F10
melanoma cells induced by melanocyte-stimulating hormone (α-MSH), and modulate the
expressions of important cellular enzymes, tyrosinase, tyrosinase-related protein 1 (TRP-1),
and tyrosinase-related protein 2 (TRP-2), which involved the biosynthetic production of
melanin [26]. Green tea (Camellia sinensis (L.) Kuntze) extract and its constituents, including
gallocatechin-3-O-gallate (GCG), epigallocatechin-3-O-gallate (EGCG), and epicatechin-3-
O-gallate (ECG) exhibited the effective antityrosinase efficacy [27]. Several plant natural
products were reported to possess the antityrosinase activity and antimelanogenesis effect,
including citrus essential oils, sesamol, haginin A, and etc. [28,29]. Bioactive ginsenosides,
including ginsenoside Rh6, vina-ginsenoside R4, vina-ginsenoside R13, ginsenoside Rh23,
and floralginsenoside A, isolated from Panax ginseng C. A. Meyer (Araliaceae) leaf and
berry exhibit the antimelanogenesis effect in zebrafish model [30–32]. The aims of the study
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are to investigate the chemical composition and antimelanogenesis effects (in vitro and
in vivo) of A. dammara leaf essential oil.

2. Materials and Methods
2.1. Plant Material

The fresh and mature leaves (dark green) of Agathis dammara (Lamb.) Rich. were
collected from the campus (25◦01′03.0′′ N 121◦32′21.1′′ E) of National Taiwan University,
Taipei, Taiwan in March 2022. The diameter at breast height (DBH) of the tree is 31.9 cm,
and the height is 11.6 m. The species was identified by Dr. Chih-Chieh Yu, Xishuangbanna
Tropical Botanical Garden, Chinese Academy of Sciences. Voucher specimen (AD0322) has
been kept in the laboratory of Chemical Utilization of Biomaterials, School of Forestry and
Resource Conservation, National Taiwan University.

2.2. Hydrodistillation of Essential Oil

The fresh and mature leaves of A. dammara were hydrodistilled for 6 h by using the
Clevenger apparatus. After the hydrodistillation, the leaf essential oil was placed in a dark
glass bottle and stored in a refrigerator at 4 ◦C for further investigation [33–35].

2.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

To investigate the chemical composition of the essential oil, the analysis of A. dammara
leaf oil was carried out on a Trace GC Ultra (Thermo Fisher Scientific, Waltham, MA,
USA) equipped with a DB-5 MS column (Crossbond 5% methylpolysiloxane, 30.0 m
length × 0.25 mm diameter, thickness 0.25 µm; Agilent Technologies, Palo Alto, CA, USA).
The oven temperature started from 60 ◦C for 3 min, programed at 3 ◦C/min to 120 ◦C,
5 ◦C/min to 240 ◦C for 3 min. The injector temperature was held at 250 ◦C, and split ratio
was 10:1. The carrier gas was helium; 1.0 mL/min flow rate; ion source temperature 250 ◦C;
mass range 50–650 amu. The constituents of essential oil were characterized by National
Institute of Standards and Technology (NIST) V.2.0 and Wiley 7.0 GC-MS libraries and
Kovats indexes in the reference [36]. Kovats indexes of the constituents are determined
by retention times of n-alkanes (C7–C30) on the DB-5MS column. The relative contents
of constituents were determined by integrating the peaks on total ion chromatograms
(TIC) [37,38].

2.4. Antityrosinase Assay

Tyrosinase is an essential enzyme in melanogenesis. The antimelanogeneic effect of
specimen can be preliminarily determined by its tyrosinase inhibitory activity. The activity
was determined by previous assays with minor modification [24,39]. The specimen-buffer
mixture (110 µL) was added in a 96 well microplate. The specimen was diluted in DMSO
and mixed with 0.1 M potassium phosphate buffer (pH = 6.8). Kojic acid (Sigma, St. Louis,
MO, USA) and arbutin (Sigma, St. Louis, MO, USA) were used as the positive controls.
Subsequently, 50 µL of 200 U/mL mushroom tyrosinase (EC 1.14.18.1; Sigma, St. Louis,
MO, USA) was added and mixed with the specimen-buffer mixture. After mixed with
40 µL of substrate (L-tyrosine and L-DOPA), the mixture was incubated for 10 min at room
temperature. Next, the 96-well microplate was sent into SPEOTROstar, the microplate
reader (BMG Labtech, Ortenberg, Germany), and the absorbance (475 nm) of each well
was measured. The tyrosinase inhibitory activity was presented as inhibition rate and half
maximal inhibitory concentration (IC50). The equation of inhibition rate is as followed:
Inhibition (%) = [1 − (Aspecimen − Aspecimen’s blank)/(Acontrol − Acontrol’s blank)] × 100. The
IC50 was determined by concentration-response curve. The experiments were performed
in triplicate.

2.5. Antimelanogenesis Effect in Zebrafish Embryos

Wild-type AB zebrafish (Danio rerio) were maintained under synchronized conditions
(26–30 ◦C; pH = 6.5–7.5; 14 h/10 h of light/dark cycle). 9 h-post-fertilization (hpf) embryos
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were collected and arrayed in 24 well plate. Each well (1 mL) contains 5 embryos, E3
medium, and specimen diluted in 1% DMSO. After that, the plate was incubated at 28 ◦C
for 48 h, and the 57 hpf zebrafish embryo were photographed under a stereomicroscope
(Hamlet SEM-H, Taiwan) at 40× magnification. The melanin content of zebrafish embryos
was quantified by ImageJ (V1.52a) and presented as inhibition rate. The calculation of
inhibition is: Inhibition (%) = [1 − (Intensity specimen/Intensity control)] × 100. 1-Phenyl-2-
thiourea (PTU), kojic acid, and arbutin were the positive controls [24,27,40]. The protocol
was approved by the Institutional Animal Care and Use Committee (IACUC) in National
Taiwan University (IACUC Approval No: NTU-112-EL-00072), all zebrafish were handled
by the 3R’s principles of laboratory animal care and use.

2.6. Statistical Analysis

The statistical analysis of data obtained in the study was analyzed by SPSS (Statistical
Product and Service Solutions) (Chicago, IL, USA) Version 16 with the Scheffe’s multiple
comparison test, a post-hoc multiple comparison method. The confidence interval was set at
the level of 95%.

3. Results and Discussion
3.1. Chemical Constituents of A. dammara Leaf Essential Oil

In this study, leaf essential oil was hydrodistilled from the mature dark green leaves
of A. dammara. The yield of leaf essential oil was 0.15 ± 0.05%, on dry matter basis of leaf.
Figure 1 showed the gas chromatogram of A. dammara leaf essential oil. The constituents
of A. dammara leaf essential oil were analyzed by using GC-MS, and there are 21 con-
stituents found in the chromatogram. According to Table 1, the leaf essential oil contained
sesquiterpene hydrocarbons (69.35 ± 2.18%), diterpene hydrocarbons (13.64 ± 1.46%), and
oxygenated sesquiterpenes (3.10 ± 0.21%). Except for 16-kaurene (12.43 ± 1.32%), most
of the major constituents were sesquiterpenoids, including δ-cadinene (16.12 ± 0.53%),
γ-gurjunene (15.57± 0.49%), β-caryophyllene (8.58± 0.94%), germacrene D (8.53± 0.20%),
and γ-cadinene (5.33 ± 0.16%) (Figure 2). Chen et al. analyzed the chemical constituents of
A. dammara leaf essential oil, the major components were limonene (36.81%), β-bisabolene
(33.43%) and β-myrcene (25.48%) [6]; the content of monoterpenoids, limonene and β-
myrcene, was over 50%. The result of the study is inconsistent with our analysis of the
chemical compositions of leaf essential oil. New or young leaves of A. dammara are light
green color, later turn dark green after a few days, and keep dark green color. Differences
between two studies of chemical constituents of leaf essential oil may be due to the maturity
of leaf, collected region, environment temperature, sunlight, season, and etc.
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Table 1. Constituents of essential oil from Agathis dammara leaves.

RT a (min) KI b rKI c Constituent M.F. M.W. Relative
Content (%)

Identified
Method d

23.34 1335 1338 δ-Elemene C15H24 204 0.23 ± 0.03 MS, KI
23.84 1348 1351 α-Cubebene C15H24 204 1.65 ± 0.21 MS, KI
24.69 1369 1371 α-Ylangene C15H24 204 2.84 ± 0.39 MS, KI
24.94 1375 1376 α-Copaene C15H24 204 2.47 ± 0.31 MS, KI
25.40 1386 1388 β-Cubebene C15H24 204 0.62 ± 0.06 MS, KI
26.50 1416 1419 β-Caryophyllene C15H24 204 8.58 ± 0.94 MS, KI
27.68 1454 1454 α-Caryophyllene C15H24 204 4.37 ± 0.31 MS, KI
28.35 1475 1477 γ-Gurjunene C15H24 204 15.57 ± 0.49 MS, KI
28.50 1479 1481 Germacrene D C15H24 204 8.53 ± 0.20 MS, KI
29.03 1495 1500 α-Muurolene C15H24 204 1.71 ± 0.01 MS, KI
29.46 1510 1513 γ-Cadinene C15H24 204 5.33 ± 0.16 MS, KI
29.64 1517 1522 δ-Cadinene C15H24 204 16.12 ± 0.53 MS, KI
30.00 1531 1534 trans-1,4-Cadinadiene C15H24 204 0.58 ± 0.03 MS, KI
30.12 1535 1538 α-Cadinene C15H24 204 0.46 ± 0.03 MS, KI
30.24 1540 1545 α-Calacorene C15H20 200 0.25 ± 0.02 MS, KI
30.81 1560 1565 β-Calacorene C15H20 200 0.10 ± 0.01 MS, KI
32.54 1626 1628 1-epi-Cubenol C15H26O 222 0.41 ± 0.03 MS, KI
32.91 1641 1646 δ-Cadinol C15H26O 222 1.31 ± 0.09 MS, KI
33.23 1654 1654 α-Cadinol C15H26O 222 1.39 ± 0.10 MS, KI
38.69 1898 1896 Rimuene C20H36 276 1.21 ± 0.14 MS, KI
41.63 2047 2043 16-Kaurene C20H32 272 12.43 ± 1.32 MS, KI

Sesquiterpene Hydrocarbons 69.35 ± 2.18
Oxygenated Sesquiterpenes 3.10 ± 0.21

Diterpene Hydrocarbons 13.64 ± 1.46

Total Identified 86.09 ± 0.51
a RT: Retention time; b KI: Kovats index relative to n-alkanes (C7–C30) on a DB-5MS column; c rKI: reference
Kovats index from other research [36]; d MS: NIST and Wiley libraries spectra and literature; KI: Kovats index.
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Figure 2. Chemical structures of major constituents of A. dammara leaf essential oil.

The sesquiterpenoids of leaf essential oil were dominated by compounds with cad-
inane skeleton, including α-muurolene, α-cadinene, γ-cadinene, δ-cadinene, trans-1,4-
cadinadiene, α-calacorene, β-calacorene, 1-epi-cubenol, α-cadinol, and δ-cadinol. The
compounds with copane skeleton were α-copaene and α-ylangene. α-Cubebene and
β-cubebene were classified as compounds with cubebane skeleton. α-Caryophyllene and β-
caryophyllene were characterized as caryophyllane skeleton. Other compounds, δ-elemene,
γ-gurjunene, and germacrene D, were characterized as elemane skeleton, guaiane skeleton,
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and germacrene skeleton, respectively. As for the diterpenes, rimuene and 16-kaurene, they
were classified as rosane and kaurane skeleton compounds.

The major constituents of A. dammara leaf essential oil were likewise observed in those
of A. robusta F. M. Bailey and A. macrophylla (Lindl.) Mast., which share a same clade with
A. dammara in the phylogenetic tree [41,42]. Brophy et al. reported that constituents of
A. robusta leaf essential oil were spathulenol (36.7%), rimuene (5.6%), α-pinene (3.7%),
caryophyllene oxide (3.1%), δ-cadinene (1.6%), β-caryophyllene (1.4%), β-pinene (1.2%),
and germacrene D (1.1%) [2]. Verma et al. also reported the chemical constituents of
A. robusta leaf essential oil was predominated by sesquiterpenoids (75.6%), containing
β-selinene (18.1%), caryophyllene oxide (11.5%), spathulenol (10.5%), α-selinene (9.8%),
γ -muurolene (5.8%), and etc.; the leaf essential oil also contained diterpenoid, rimuene
(14.2%, second major component) [5]. The main constituents of A. atropurpurea the principal
components were the monoterpene α-pinene (7.9%), the sesquiterpenes δ-cadinene (9.0%)
and the diterpenes phyllocladene (12.5%) and 16-kaurene (19.4%) [2]. The identified
constituents of A. dammara leaf essential oil were somewhat similar to those of of A. robusta,
A. macrophylla, and A. atropurpurea leaf essential oils.

3.2. Tyrosinase Inhibitory Activity of A. dammara Leaf Essential Oil

Tyrosinase which catalyzes L-tyrosine and L-DOPA into dopaquinone and dopachrome,
respectively, is the essential enzyme in melanogenesis. To inhibit the melanogenesis process,
suppressing the tyrosinase activity is one of the most common and effective strategies [43].

Figure 3 shows that leaf essential oil could prevent tyrosinase from acting as dipheno-
lase and catalyzing L-DOPA to dopaquinone. Tyrosinase inhibitory activity of A. dammara
leaf essential oil presented the dose-dependent effect. The inhibition rates were 6.93 ± 1.37%,
18.36 ± 1.82%, and 28.38 ± 3.95% at the concentration of 100, 200, and 400 µg/mL, respec-
tively. Kojic acid, positive control, presented inhibition of diphenolase. Kojic acid showed
69.15% inhibition at the concentration of 12.5 µg/mL, followed by 48.20%, 24.94%, 10.57%
at the concentrations of 6.25, 3.13, and 1.56 µg/mL. The IC50 values of leaf essential oil and
kojic acid were 690.02 ± 18.85 and 6.74 ± 0.09 µg/mL, respectively (Table 2). When the
substrate was L-tyrosine, no significant inhibitory activity of leaf essential oil was observed.
As for positive control, kojic acid (IC50 = 2.46 ± 0.06 µg/mL) presented the tyrosinase
inhibitory activity (Table 2).
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Table 2. IC50 values of A. dammara leaf essential oil against mushroom tyrosinase.

Specimen
IC50 (µg/mL)

L-Tyrosine as the Substrate L-DOPA as the Substrate

Leaf essential oil - * 690.02 ± 18.85
Kojic acid ** 2.46 ± 0.06 6.74 ± 0.09

*: >800 µg/mL; **: Positive control.

Huang et al. examined the tyrosinase inhibitory activity of Vitex negundo Linn. (Lami-
aceae) leaf essential oil, the inhibition rate of leaf essential oil against tyrosinase were
26.6% at the concentration of 5 mg/mL, using L-DOPA as the substrate [44]. Cheraif et al.
evaluated the antityrosinase activity of essential oils from six Algerian plants, Juniperus
oxycedrus L. (Cupressaceae) essential oil displayed the best tyrosinase inhibitory activity
with a tyrosinase inhibition rate of 39.65% at the concentration of 1 mg/mL [45]. Etlingera
elatior (Jack) R. M. Sm. (Zingiberaceae) leaf essential oil exhibited a moderate activity
against tyrosinase, with an IC50 value of 2.34 ± 0.04 mg/mL when using L-DOPA as
the substrate [46]. Salleh et al. investigated the antityrosinase effects of leaf essential oil
and bark essential oil of Beilschmiedia madang Blume (Lauraceae), using L-DOPA as the
substrate, inhibition rates of leaf essential oil and bark essential oil were 53.1 ± 0.2% and
51.2 ± 0.2%, respectively, at the concentration of 1 mg/mL [47]. Pogostemon plectranthoides
Desf. (Lamiaceae) leaf essential oils collected from three bio-geographical regions also had
the antityrosinase activity. Leaf essential oils were rich in sesquiterpenes, and the active
leaf essential oil possessed the tyrosinase inhibitory effect with the inhibition rate of ca.
50% at the concentration of 1 mg/mL, using L-DOPA as the substrate [48]. These related
researches illustrated that A. dammara leaf essential oil exhibited the tyrosinase inhibition
potential.

3.3. Antimelanogenesis Effect of A. dammara Leaf Essential Oil in Zebrafish

Zebrafish (D. rerio) has been a powerful and wide used model organism and the
efficient alternative to other animal models in multiple researches. In the present study,
zebrafish is a suitable vertebrate model for melanogenesis study because of its easily
observed pigmentation and the similarity of gene sequences and organ systems [21,49,50].
The antimelanogenesis effects in the zebrafish model caused by different treatments were
shown in Figure 4. In control group, the patterns of pigmentation presented normal
dispersion. After treated with A. dammara leaf essential oil, kojic acid, and arbutin, the
zebrafish embryos displayed less amount of pigmentation. As for PTU treatment, the
zebrafish embryos became transparent after 48 h incubation, inhibition rate of melanin was
98.23 ± 1.01% at the concentration of 50 µg/mL.
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Table 3 shows the inhibitory effect of each treatment on melanogenesis of zebrafish
embryo, including leaf essential oil, arbutin, kojic acid, and PTU. The melanin contents
of zebrafish embryos could decrease by 21.03%, 37.36% and 43.48% with treatment of
leaf essential oil at a concentration of 12.5, 25 and 50 µg/mL, with a dose-dependent
manner. In comparison with the treatment of arbutin, leaf essential oil presented higher
antimelanogenesis effect at the concentrations of 25 and 50 µg/mL. Significant statistical
differences (p < 0.05) were observed between the treatment of leaf essential oil (43.48%)
and the treatment of arbutin (21.49%) at the concentration of 50 µg/mL. Another positive
control, kojic acid, inhibited 18.53% and 20.44% of melanin production of zebrafish embryos
at the concentrations of 25 and 50 µg/mL, respectively. Kojic acid exhibited the lower
melanin inhibition in zebrafish embryos than leaf essential oil treatments did.

Table 3. Inhibitory effect of A. dammara leaf essential oil on melanogenesis of zebrafish embryos.

Specimen Concentration (µg/mL) Inhibition (%)

PTU 50 98.23 ± 1.01 d

Arbutin
25 19.62 ± 9.10 a,b

50 21.49 ± 5.98 a,b

Kojic acid 25 18.53 ± 3.56 a

50 20.44 ± 7.27 a,b

Leaf essential oil
12.5 21.03 ± 10.02 a,b

25 37.36 ± 9.79 b,c

50 43.48 ± 7.30 c

PTU: 1-Phenyl-2-thiourea. Different letters (a–d) in the table indicate significantly different inhibition values
between specimens at the level of p < 0.05 according to the Scheffe’s test.

Chelly et al. (2021) evaluated the antimelanogenesis activities of methanolic extracts of
Rhanterium suaveolens Desf. (Asteraceae) flower, stem, and leaf, with in vitro antityrosinase
inhibition assay and in vivo zebrafish embryo assay [51]. Among these part extracts of
R. suaveolens, flower extract exhibited the best antityrosinase effect on tyrosinase induced
L-DOPA oxidation. Flower extract also possessed the statistically significant decrease of
melanin formation in zebrafish embryo at the concentrations of 0.5 and 1 mg/mL. The
reduction of melanin formation in zebrafish embryo was less than 50% after 48 h treatment
of 1 mg/mL concentration of R. suaveolens flower extract. Dalbergia pinnata (Lour.) Prain
essential oil inhibited 18.77% of melanin production of zebrafish embryos at a concentration
of 30 µg/mL [52]. Bletilla striata (Thunb.) Rchb. f. tuber extract reduced 18.35% and
24.39% of melanin formation of zebrafish embryos at the concentrations of 10 µg/mL and
30 µg/mL, respectively [53]. The results in this study revealed that A. dammara leaf essential
oil possessed a potent melanogenesis inhibition activity in zebrafish embryos.

Yang et al. investigated the antimelanogenesis effect of lime mint (Mentha aquatica ×
M. suaveolens) essential oil and its main constituents in B16F10 murine melanoma cells. The
main constituents of lime mint essential oil were D-limonene (41.10%), D-carvone (8.58%),
δ-selinene (6.73%), and β-caryophyllene (6.24%). Among these main constituents, only
β-caryophyllene exhibited the antimelanogenesis activity in a dose dependent manner.
Results revealed that β-caryophyllene can modulate the expression of melanogenesis re-
lated proteins, including tyrosinase, microphthalmia-associated transcription factor (MITF),
TRP-1, and TRP-2. β-Caryophyllene reduces cellular melanogenesis by down regulating
the expression of these melanogenesis related proteins, resulting in the decrease in melanin
content of B16F10 murine melanoma cells at the concentration of 150 µM [54]. According
this related research, compound β-caryophyllene might contribute the melanogenesis effect
of A. dammar leaf essential oil.
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4. Conclusions

For the assessment of antimelanogenesis effect of essential oil from A. dammara leaf,
both in vitro and in vivo antimelanogenesis assays were conducted in this study. The chemi-
cal constituents of A. dammara leaf essential oil was dominated by sesquiterpenoids through
the GC-MS analysis. The most abundant constituent was δ-cadinene (16.12%), followed
by γ-gurjunene (15.57%), 16-kaurene (12.43%), β-caryophyllene (8.58%), germacrene D
(8.53%), and γ-cadinene (5.33%). Among all the constituents, most of the sesquiterpenoids
were the compounds with cadinane skeleton. In vitro antityrosinase assay, A. dammara
leaf essential oil showed diphenolase inhibitory activity. When the substrate was L-DOPA,
the IC50 value of leaf essential oil was 690.02 µg/mL. According to the in vivo zebrafish
embryo assay, leaf essential oil has shown efficacy to reduce the melanin formation in
zebrafish embryos. At a concentration of 50 µg/mL, leaf essential oil, arbutin, and kojic
acid inhibited 43.48%, 21.49%, and 20.44%, respectively, of melanin production of zebrafish
embryos. Antimelanogenesis activity of leaf essential oil was better than those of arbutin
and kojic acid in zebrafish embryos. These results revealed A. dammara leaf essential oil
has in vitro and in vivo antimelanogenesis activities, and has the potential to be the skin
whitening drug and depigmentation ingredient for hyperpigmentary disorders.
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