研究報告

Ti02添加量對精製漆耐光性改善及塗膜 性質之影響

李佳臻1 盧崑宗2*

(收件日期:民國108年7月29日、接受日期:民國108年8月24日)

【摘要】精製漆(Refined oriental lacquer)是將生漆(Oriental lacquer)攪拌加熱脫水而得的天 然高分子塗料,其塗膜具溫潤色澤、優越的耐藥品及耐久性等,但因含芳香環結構之漆 酚聚合體,導致塗膜耐光性不佳;為改善精製漆耐光性,本研究依精製漆固形分分別添 $m0 \cdot 1 \cdot 2 \cdot 3 \cdot 5 \cdot 10 \cdot 15 \cdot 20及30 phr之微米級金紅石型二氧化鈦(TiO₂)至精製漆中,$ 探討其不同添加量對精製漆耐光性之改善效益,及對塗料與塗膜性質之影響。試驗結果發現,TiO₂添加量達10 phr以上者已失去精製漆原有之色澤;未添加TiO₂精製漆之塗膜經 $UV光照射192 hr之色差値(Color difference, <math>\Delta E^*$)、明度差値(Brightness difference, ΔL^*) 及黃色指數差値(Yellowness difference, ΔF^*)、明度差値(Brightness difference, ΔL^*) 及黃色指數差値(Yellowness difference, ΔYI),分別為31.1、10.7及99.0,而添加少量之1 phr即可明顯改善精製漆塗膜耐光性,其 $\Delta E^* \cdot \Delta L^* D \Delta YI$ 値分別為15.0、6.2及54.6;同 時以SEM觀察塗膜表面樹膠質析出減少;又由FTIR分析可知,精製漆塗膜之光劣化主要 發生於漆酚苯環及其側鏈結構,而添加TiO₂即可減少光劣化現象;又添加1 phr之TiO₂即 可獲得良好之耐衝擊性、抗彎曲性、附著性及耐熱性等均衡的塗膜性質。

【關鍵詞】生漆、精製漆、耐光性、二氧化鈦。

¹ 國立中興大學森林系碩士。

Graduated student, Department of Forestry, National Chung-Hsing University.

^{2*} 國立中興大學森林系教授(通訊作者)。

Professor, Department of Forestry, National Chung-Hsing University, Corresponding Author. E-mail: lukt@nchu.edu.tw.

EFFECTS OF ADDING AMOUNTS OF TIO₂ ON THE LIGHTFASTNESS IMPROVEMENT AND FILM PROPERTIES OF REFINED ORIENTAL LACQUER

Jia-Jhen Lee¹ Kun-Tsung Lu^{2*}

(Received: July 29, 2019; Accepted: August 24, 2019)

[Abstract] The refined oriental lacquer, obtained from oriental lacquer by heating with agitation and dehydration, is a natural polymeric coating which possesses a satiny texture and excellent chemical resistance and durability of film. However, its film contains aromatic urushiol polymeric structure which results in poor lightfastness. In this study, for improving the lightfastness of refined oriental lacquer, a micrometer rutile titanium dioxide (TiO₂) of 0, 1, 2, 3, 5, 10, 15, 20 and 30 phr (by wt. of solid content of refined oriental lacquer) was added to the refined oriental lacquer, respectively. The effects of adding amounts of TiO₂ on the lightfastness improved efficiency and the coating and film properties of refined oriental lacquer were examined. The results showed that the color and gloss of refined oriental lacquer would be lost on the adding amounts of TiO₂ over 10 phr. The color difference (ΔE^*), brightness difference (ΔL^*) and yellowness difference (Δ YI) of refined oriental lacquer film without adding TiO₂ were 31.1, 10.7 and 99.0, respectively, after UV exposure of 192 hrs. Furthermore, the lightfastness of refined oriental lacquer could be improved significantly by adding only 1 phr of TiO₂ and its ΔE^* , ΔL^* and ΔYI were 15.0, 6.2 and 54.6, respectively. At the same time, the gum separated out to the surface of film decreased by SEM inspection. According to FTIR analysis, the major photodegradation of the refined oriental lacquer film occurred in the benzene ring and side chain structure of urushiol which could be slowed down by adding TiO₂. Meanwhile, the film with 1 phr TiO₂ added had excellent balance properties between impact resistance, bending resistance, adhesion, heat resistance and other performances.

[Key words] Oriental lacquer, Refined oriental lacquer, Lightfastness, Titanium dioxide (TiO₂).

I、前言

在環保意識抬頭之潮流下,以再生性 天然高分子取代石化塗料產品,已成為世 界各國開發塗料的必然趨勢;生漆(Oriental lacquer)係割取漆樹屬植物的枝幹,並收集 及過濾其所分泌之樹脂所得之油包水(Water in oil, W/O)的乳狀天然高分子材料。生漆主 要成分包含丙酮可溶之漆酚(Urushiol)及其 同系化合物、丙酮不溶但水可溶之樹膠質 (Gum)及漆酶(Laccase)、丙酮及水均不溶之 含氮物質(Nitrogenous compounds),及水等 所組成,可作為一般漆器之底漆、木材防 水及防腐、金屬防鏽、印染型紙及膠合劑 等用途;若將生漆攪拌加熱脫水製成精製 漆(Refined oriental lacquer),則可進一步作 為工藝品、高級漆器、家具等物品之塗裝 用途。由於生漆塗膜具蠟色光澤、耐久性 及溫潤質感,而使漆器美麗而雋永,同時 具有防腐蝕、耐酸、防潮絕緣、耐高溫等 功能,為我國歷史文化有名之化學品。

由於生漆塗膜中含大量芳香環結構 之漆酚聚合體及樹膠質等成分,受UV光 照射時,塗膜易受光氧化作用而造成漆 酚聚合體裂解並生成自由基,而後又經 氧化產生-OH及-OOH鍵結,而漆酚側鏈 之共軛三烯則因光氧化產生分子重排而 得酮類物質,進而促使分子鏈間之光劣化 連鎖反應而使塗膜降解;此外,因樹膠質 受UV照射析出,因此塗膜易產生裂痕、 粉化(Chalking)、光澤度下降等缺陷(大薮 等,1998;永瀨、宮腰,1998c;神谷、 西村, 2013; Honda et al., 2008); 為改善 生漆塗膜耐光性並擴大其用途,除將生漆 改質外,最簡易可行之方式為添加適量之 光安定劑(Photostabilizers)。一般光安定 劑依其作用機制,可分為光遮蔽劑(Light screeners)、光吸收劑(Light absorbers)、自 由基捕捉劑(Radical scavengers)、激發態 捕捉劑(Excited-state quenchers)、抗氧化 劑(Antioxidants)及單峰氧捕捉劑(Singlet oxygen scavengers)等種類(張上鎭、許富 蘭,1994);其中,紫外光遮蔽劑亦可稱 為紫外光散射劑,其為具高折射之粉體物 質,當紫外光經過此遮蔽劑與遮蔽材之介 面時,係因兩者折射率差異大而造成散

射,使紫外光無法穿透至材料內部(林新 賀,2001),以達延緩材料光劣化之目的。 紫外光遮蔽劑毒性低、光安定與持久性優 良,而目前市售大多以微細之無機陶瓷材 料粒子,如氧化鋅、二氧化鈦及高嶺土 等, 並廣泛用於塑膠、塗料、織品與化妝 品上(Ahmed mohaned et al., 2010; Manaia et al., 2013)。紫外光之折射和散射效果良 窳受遮蔽劑粒子本身之折射率程度、表面 構造、粒徑及分散性影響(Wiechers et al., 2013),若紫外光遮蔽劑之粉體分散越細, 顆粒越小,其單位體積內的遮蔽面積則越 大,且光反射效果愈佳,對抗紫外光之效 果亦會增加,但隨粉體顆粒越小,表面活 性相對提高,故可能造成凝集結塊現象, 對光反射效益造成反效果。

在眾多紫外光遮蔽劑中,二氧化鈦 (TiO₂)為具高折射率、高遮蔽性和化學穩 定高之白色粉末狀顏料,常用於塗料、 塑膠、化妝用品等。TiO2依結晶型態可分 正方晶系之高温金紅石型(Rutile)、低溫 銳鈦礦型(Anatase)與斜方晶系之板鈦礦型 (Brookite)三種晶體結構,其中板鈦礦型結 構不穩定,因此較少應用(咸才軍,2004), 而銳鈦礦型二氧化鈦之光催化效果較金 紅石型者高,常作為光觸媒反應劑(Jung et al., 1997); 金紅石型者對光線和紫外光 具良好分散性與遮蔽作用,可減緩紫外光 對材料之危害,適合作為紫外光遮蔽劑 (Linsebigler et al., 1995)。此外,市售TiO2 粒徑尺寸可大至毫米(mm)小至奈米(nm)等 級,當其粒徑越小時,其反應面積越大, 故反射率越高,但當粒徑小至奈米等級(小 於100 nm)時,易分散不均產生凝集現象,

進而影響其遮蔽效果,故本研究選用微米 級金紅石型TiO2作為紫外光遮蔽劑,探討 其不同添加量對精製漆耐光性之改善效益 及對塗料與塗膜性質之影響。

Ⅱ、材料與方法

(I) 試驗材料

- 精製漆(Refined oriental lacquer):將 購自龍南天然漆文物館之安南漆樹 (*Rhus succedanea*)產生漆,置於玻璃器 皿中,將漆液加熱至40℃,以攪拌機 (Eyela NZ-1100)攪拌,其以巴爾沙木 (*Ochroma pyramidale*)所製之攪拌葉片 與器皿底部留有5 mm空隙,攪拌速率 為60 rpm,當含水率達5%時即得精製 漆。
- 二氧化鈦(TiO₂):購自豪元實業股份有 限公司,外觀為白色超細粉末,粒徑 尺寸0.3~0.4 µm,白度≥95%,其結晶 為金紅石型,比重4.0,pH值6.5~8.5, 最大吸油量為22 g/100g,水溶解度 ≤0.5,其表面經砂、鋁及有機化合物 處理。
- 塗裝試片:柳杉(Cryptomeria japonica) 靠心材木片,含水率為11.0%,試驗 片規格為8 cm (R)×15 cm (L)×1.2 cm (T),經#240及#400砂紙研磨後備用。 其他如玻璃板、耐磨試驗片(S-16標準 板)、馬口鐵片及投影片等,依各試驗 項目選用。
- (II) 試驗方法
 - 含TiO₂精製漆調配 本試驗將TiO₂作為紫外光遮蔽劑外,

亦將其視為體質顏料,因其具吸油性,為 試驗其最大可行添加量,故將其從0~30 phr 之廣範圍添加,依精製漆固形分,分別添 加0、1、2、3、5、10、15、20及30 phr 之TiO₂於精製漆中,並以轉速350 rpm攪 拌機攪拌60 min後備用。分別以T-0phr、 T-1phr…T-30 phr表示。

2. 塗料性質之測定

- pH值(pH value):於25℃下以Suntex sp-701玻璃電極棒測定之。
- (2) 黏度(Viscosity):在室溫25℃下,以
 Brookfield viscometer DV-E型圓筒迴
 轉式黏度計測定,單位cps。
- (3) 乾燥時間(Drying time):以濕膜厚 度76 µm塗布於長條玻璃板上,並 置於3-speed B.K.乾燥時間記錄器, 於 25℃、80% RH之恆溫恆濕機中 測定之,並參考Lu等人(2005)之研 究,將乾燥過程分為指觸乾燥(Set to touch or Touch-free,代號TF)及硬 化乾燥(Dry hard or Harden drying, 代號HD)時間。
- 試材之塗裝:將含不同比例TiO₂精 製漆以可調式施模器(3530M003, Elcometer Co. U.K)濕膜厚度100 µm 塗 布於各種試材上,並置於25℃、80% RH之恆溫恆濕箱中1日後,再移置 25℃、65±5% RH之環境下乾燥1週後 進行以下各項塗膜性質測定。
- 4. 塗膜性質之測定
 - 耐光性(Lightfastness):將玻璃試 片置於SUGA Test Instruments塗 料用褪色試驗機中,以試驗溫度 32±4℃,燈源為H400-F水銀燈

管,照光時間分別為0、12、24、 48、96、144及192 hr,進行耐光 試驗。色差分析以Minolta CM-3600d分光式色差計測定,測試孔 徑8 mm,D65光源,視角10°,每 試片測定9點,測定塗膜於耐光試 驗之經時顏色變化,並依據國際 照明協會(Commission International del'Eclairage) CIE L*a*b*色彩 體系表示,以軟體計算塗膜色差 (Color difference, Δ E*)、明度差 (Brightness difference, Δ L*)及黃色 指數差(Yellowness difference, Δ YI) 等差值。

- (2) 掃描電子顯微鏡(SEM)觀察:將照 光前後之塗膜單離後,已貴金屬金 行鍍膜處理,再以TOPCON掃描式 電子顯微鏡觀察之。
- (3)傅立葉轉換紅外線光譜(Fourier transform infrared spectroscope, FTIR):以Perkin-Elmer spectrum 100光譜儀分析,將照光前後之 塗膜以單點全反射法(Single point attenuated total reflection)分析, 檢測器為FD-DTGS,檢測範圍為 4000~650 cm⁻¹,解析度為4 cm⁻¹,掃 描次數16次。
- (4) 硬度(Hardness):以Braive Co.之 König / Persoz擺振式硬度計,依 DIN 53157 König標準,測定塗布於 玻璃試片之塗膜硬度,每試片測定 7點並平均之,單位為秒(sec)。
- (5) 質量保留率(Mass retention):精秤約0.3 g之單離塗膜置於圓筒濾紙

中,再置於索斯勒萃取器(Soxhlet extractor)中,並以丙酮溶劑進行虹 吸4次/hr,連續6 hr後,取出圓筒濾 紙,並置於50℃烘箱中乾燥,計算 質量保留率。

- (6) 動態機械分析(Dynamic mechanical analysis, DMA):以Perkin-Elmer DMA 8000之單懸臂彎曲(Single bending)分析,將裁切6mm×20 mm 之單離塗膜長條試片包覆於鋁片 內,並固定於專用夾具上,於氮 氣環境下,以頻率1 Hz,溫度範圍 0~180°C,升溫速度5°C/min,測定 塗膜玻璃轉移溫度(Glass transition temperature, Tg)。
- (7)光澤度(Gloss):將柳杉試片以Dr. Lange之Reflectometer光澤度計測 定,光源入射角為60°,以平行木 理方式測定15點並平均之,單位 為%。
- (8)冷熱循環試驗:將柳杉試材置於-20℃冰箱中2hr後,取出並置於50℃烘箱中2hr,此為一循環, 共進行20循環,記錄塗膜破壞時的循環數。若經20循環仍無破壞時,計算塗膜光澤度保留率(Gloss retention),如式(1)。

光澤度保留率(%)= [冷熱循環試驗後之光澤 度/試驗前之光澤度]×100 (1)

(9) 耐衝擊性(Impact resistance):將柳 杉試片以Du Pont公司之耐衝擊試驗 儀(Impact Tester IM-601)測定,衝擊 錘直徑為1/2 in,以300 g重錘自高 處落下對塗膜衝擊,記錄塗膜尙保 持完整之高度,單位為cm。

- (10) 附著性(Adhesion):將柳杉試片依
 CNS 1076 K6800方格試驗(Cross cut test)測定,塗膜附著性之優劣
 等級依序為10、8、6、4、2及0等級。
- (11) 抗彎曲性(Bending resistance):
 將馬口鐵試片以抗彎曲試驗器
 (Bending tester, Ueshima-seisakusho
 Co. Ltd.)測定,鋼軸直徑為2、3、
 4、6、8及10 mm,並記錄塗膜破
 壞之鋼軸直徑號數,亦即為鋼軸
 直徑之 mm 數,號數越小代表示
 塗膜抗彎曲性越佳。
- (12) 拉伸強度與破壞伸長率(Tensile strength and elongation at break): 將單離塗膜依ASTM D-638塑料 拉身試驗之標準試驗規格,裁 製成I型拉伸試片,其中央平行 長度為10 mm,量測膜厚後,使 用Shimadzu公司生產之EZ Tester series拉伸試驗機,以5 mm/min拉 伸速度,夾具距離40 mm,測定塗 膜拉伸強度與破壞伸長率。
- (13) 耐磨性(Abrasion resistance):將
 S-16標準板試片以Taber公司之耐
 磨耗試驗機(Abrasion Model 503)測
 定,採用CS-10號磨輪、荷重500
 g,記錄經 1000轉研磨後的塗膜損
 失毫克重(mg)。
- (14) 熱重量分析(Thermogravimetric analysis, TGA):以Perkin-Elmer
 (STA-6000)熱重分析儀測定,將單 離塗膜裁切為每塊約2 mm×4 mm

之試片,秤取約2.6 ± 0.1 mg置於 坩鍋,於氮氣環境下加熱,升溫 速度10℃/min,於測定溫度範圍 由50℃至750℃,並記錄各階段最 高熱分解速率溫度(Temperature of max decomposition rate, Td_{max})及 熱分解速率(derivative weight, %/ mim)。

III、結果與討論

(I) 塗料性質

添加0、1、2、3、5、10、15、20及30 phr之微米級金紅石型TiO₂於精製漆之塗料 性質如表1所示。各精製漆之pH值相似,介 於3.4~3.5,顯示添加TiO₂並不影響精製漆 塗料之pH值。各精製漆黏度,隨TiO₂添加 量而上升,由未添加者之1049 cps遞增至添 加30 phr之2367 cps。

將各精製漆塗裝試材置於25℃、80% RH下之乾燥時間,如表1所示。不同TiO₂添 加量精製漆之乾燥時間相似,其指觸乾燥 (TF)及硬化乾燥(HD)時間分別約6.0~6.5 hr 及9.0~10.0 hr,其中以添加1 phr 者之TF較 未添加者(6.5 hr)縮短至6.0 hr。此係因添加 TiO₂並不影響精製漆之pH値及漆酶活性, 故其TF時間相似;但當TiO₂添加量≥5 phr 時,精製漆之HD皆可縮短1 hr,此因TiO₂ 為具吸油性之體質顏料,故添加於精製漆 時,可使精製漆固形分增加,塗膜表面易 呈堅結狀態,故可縮短精製塗膜乾燥時 間。

- (II) 塗膜性質
 - 1. 耐光性

TiO ₂ (phr) pH		Mr	Drying time (hr) (25°C, 80% RH)		
	рН	$V_{1SCOSILY}(cps, 25 C) -$	TF^{a}	HD^{b}	
0	3.5	1049	6.5	10.0	
1	3.5	1056	6.0	10.0	
2	3.5	1063	6.0	10.0	
3	3.5	1091	6.0	10.0	
5	3.5	1211	6.0	9.0	
10	3.5	1352	6.0	9.0	
15	3.5	1606	6.0	9.0	
20	3.4	1664	6.0	9.0	
30	3.4	2367	6.0	9.0	

表1	不同TiO。添加量精製漆之途料性質
181	19102/小加里帕表冰足空冲江县

Table 1 Coating properties of refined oriental lacquer with different amounts of TiO₂

^a TF: Touch-free dry.

^b HD : Harden dry.

不同TiO₂添加量精製漆塗膜經褪色試 驗機照光後,其顏色經時變化如圖1~3所 示。不同TiO₂添加量精製漆塗膜之明度差 値(ΔL*)及色差値(ΔE*)均隨照光時間延長 而增加,並以未添加TiO₂者變化量最大, 且由目視即可明顯觀察到塗膜顏色變淺, 如圖4所示。精製漆TiO2含量越多,塗膜 顏色越白,並以添加1 phr者明度值差異最 小。而當TiO2添加量達10 phr,已可目視辨 知精製漆塗膜顏色變白,失去精製漆原有

Fig. 1 Time dependent brightness difference (ΔL^*) of refined oriental lacquer films with different amounts of TiO₂ after UV exposure.

圖2 不同TiO2添加量精製漆塗膜耐光試驗後之黃色指數差異經時變化。

圖3 不同TiO2添加量精製漆塗膜耐光試驗後之色差經時變化。

Fig. 3 Time dependent color difference (ΔE^*) of refined oriental lacquer films with different amounts of TiO₂ after UV exposure.

之色澤。

含TiO₂精製漆塗膜經192 hr之耐光試 驗結果再整理如表2。未添加TiO₂精製漆塗 膜之ΔL*、ΔYI、及ΔE*值分別為10.7、 99.0及31.1;添加TiO₂精製塗膜之ΔL*值 隨TiO₂添加量增加而上升,其中當添加量 ≤3 phr時其 Δ L*值皆小於未添加TiO₂者, 如1 phr之 Δ L*值最小為6.2,此係因具高 折射率之金紅石型TiO₂可反射光能,減少 精製漆塗膜之光能危害,減緩塗膜裂解速 率,進而減少樹膠質浮出於精製漆塗膜表 面,降低精製漆塗膜 Δ L*值,然而,TiO₂

- 圖4 不同TiO2添加量精製漆照光前(0 hr)後(192 hr)之塗膜外觀。
- Fig. 4 Appearances of refined oriental lacquer films with different amounts of TiO_2 before (0 hr) and after (192 hr) UV exposure.

表2 不同TiO2添加量精製漆之經照光192 hr之塗膜耐光性

TiO_2 (phr)	After	UV exposure of 1	92 hr	60° Close $(9/)$	Gloss retention (%)	
	ΔL^*	$\Delta \mathrm{YI}$	ΔE^*	- 00 010ss (70)		
0	10.7	99.0	31.1	22 ± 1	84	
1	6.2	54.6	15.0	8 ± 0	82	
2	8.3	38.6	13.3	8 ± 0	77	
3	10.5	31.7	14.4	9 ± 0	81	
5	13.8	18.9	16.6	7 ± 0	76	
10	18.3	6.6	19.6	8 ± 0	85	
15	22.2	-2.5	23.2	8 ± 0	87	
20	22.9	-8.3	24.1	9 ± 0	88	
30	24.3	-11.7	25.2	11 ± 0	100	

Table 2 Lightfastness of refined oriental lacquer films with different amounts of TiO_2 after UV exposure of 192 hr

本身即為白色之體質顏料,再加上其光折 射率可高達2.5以上(簡國民等,2003;咸才 軍,2004; Linsebigler. et al., 1995),故造 成高含量之TiO₂精製漆塗膜於光劣化後明 度值提高,使添加量≥5 phr之TiO₂精製漆 塗膜之△L*值漸大於未添加者;不同添加 量TiO,塗膜△YI值則隨TiO,添加量增加而遞 減,且當添加量大於15 phr則為負值,如由 0 phr者為99.0遞減至30 phr者為-11.7,此係 因本試驗添加金紅石型TiO2屬高折射率物 質,可直接將光能反射,而減緩精製漆塗 膜因光劣化而黄變;在ΔE*值方面,未添 $mTiO_2$ 者之 ΔE *值為31.1,而含TiO₂精製漆 塗膜之△E*值皆小於未添加者,如1 phr者 爲15.0,此顯示添加TiO2可改善精製漆塗膜 之耐光性;但含TiO₂精製漆塗膜之△E*値 則隨添加量增加而呈現先降低後增大之現 象,如添加2 phr者最低僅為13.3,而當添加 量大於2 phr則隨添加量增加而增大,此係 因塗膜△E*値爲明度及黃色指數差異之加 成效應,添加TiO,雖可反射光能以降低精 製漆塗膜ΔYI值,但隨白色體質顏料TiO₂ 量增加而造成精製漆塗膜明度大幅上升, 而在此ΔL*之影響遠大於ΔYI,故造成精 製漆塗膜ΔE*值先减少而後遞增,其中添 加1 phr者即可改善精製漆塗膜耐光性,其 ΔL^* 、 $\Delta YI \mathcal{D} \Delta E^*$ 值分別為6.2、54.6及 15.0 °

不同TiO₂添加量精製漆塗膜之光澤度 結果如表2。未添加TiO₂精製漆塗膜之光澤 度為22%,而添加TiO₂精製漆塗膜之塗膜光 澤度降低為7~11%,此係因添加TiO₂即會造 成UV之反射轉為散射,進而使整體光澤度 値下降。經192 hr照光試驗之精製漆塗膜光 澤保留率差異不大,均有80%之水準。

又由表2亦可知,添加量5 phr之精製漆 塗膜 Δ L*値已影響精製漆 Δ E*値甚鉅,亦 即明度値之增加已影響色差値。由黃熹光 (2000)抗紫外線織物之發展現況及技術趨勢 之研究可得知,當選定所使用之紫外光遮 蔽劑種類與粉體直徑,其遮蔽效果則取決 於添加量之多寡,當添加量越多,遮蔽效 果越佳,然過多的添加量則會降低織物被 遮蔽材之原有物理或其他性質,故一般其 最適添加量約為1~10 phr為宜。而本研究添 加10 phr者之 Δ L*變化已可以目視辨別明度 之差異,其和未添加TiO₂者之 Δ L*值相差 7.6,且添加10 phr者亦失去精製漆原有之色 澤,故本試驗選用添加0、1、2、3和5 phr 者分析其對精製漆塗膜性質之影響。

2. 掃瞄式電子顯微鏡觀察

以SEM觀察TiO₂精製漆塗膜於耐光試 驗前後之差異,結果如圖5。不同TiO₂添 加量精製漆塗膜經192 hr耐光試驗後,以 未添加TiO₂精製漆塗膜表面劣化程度最為 嚴重,其表面不僅出現大量樹膠質,並產 生數個孔洞,此係因塗膜光劣化降解所致 (Kamiya *et al.*, 2006;大薮等人,1998);而 添加TiO₂之精製漆塗膜則樹膠質析出量減 少,此係由TiO₂之高折射率直接將光能反 射,可以改善精製漆塗膜耐光性,其中以 添加1 phr者即可明顯改善。

3. FTIR分析

含不同TiO₂添加量精製漆塗膜於耐光試 驗前後之FTIR光譜,如圖6所示。耐光試驗 前之未添加TiO₂者於3200~3400 cm⁻¹出現寬 廣吸收峰,代表漆酚苯環上羥基(-OH)之伸 縮振動;於3010 cm⁻¹為不飽和雙鍵(-C=C-H)

圖5 含不同TiO₂添加量精製漆照光前(0 hr)後(192 hr)塗膜之掃描式電子顯微鏡觀察(1350x)。
 Fig. 5 Scanning electron microscopic image (1350x) of refined oriental lacquer films with different amounts of TiO₂ before (0 hr) and after (192 hr) UV exposure.

3750 3500 3250 3000 2750 2500 2250 2000 1750 1500 1250 1000 750 500 Wavenumvers (cm⁻¹)

圖6 不同TiO2添加量精製漆照光前(0 hr)後(192 hr)之塗膜FTIR光譜圖。

Fig. 6 FTIR spectra of refined oriental lacquer films with different amounts of TiO_2 before (0 hr) and after (192 hr) UV exposure.

之C-H伸縮振動;2924 cm⁻¹及2854 cm⁻¹處分 別為漆酚側鏈之亞甲基(-CH₂-)非對稱與對 稱伸縮振動;1615 cm⁻¹與730 cm⁻¹代表漆酚 苯環骨架結構(-C=C-)之伸縮振動吸收峰; 於990 cm⁻¹為共軛三烯(-C=C-C=C-C=C-)鍵 結(樊曉雷等,2012;Kumanotani,1998; Lu *et al.*,2004)。且由圖6光譜圖可知,代 表金紅石型TiO₂之吸收峰之660 cm⁻¹(Li and Takamasa,2004;Lu *et al.*,2015),以添加 TiO₂者於之吸收峰值較未添加者為高。

比較相同添加量不同照光時間之塗膜 FTIR光譜,發現照光時間192 hr者於3010 cm⁻¹吸收峰消失,於2924 cm⁻¹、2854 cm⁻¹及 990 cm⁻¹吸收峰值下降,而於1715 cm⁻¹之醚 鍵(-C-O-C)伸縮振動吸收峰及1700 cm⁻¹之 羰基(-C=O)伸縮振動吸收峰,兩者合併為 1707 cm⁻¹吸收峰皆峰值明顯上升。由此結 果得知精製漆塗膜經光劣化後,其漆酚側 鏈之-CH鍵結斷裂而生成二酮類等其他過氧 化物質(Kamiya *et al.*, 2006)。此外,於730 cm⁻¹之吸收峰值亦下降,此可能因漆酚苯 環上受光劣化而降解所致。由上述FTIR光 譜可知,精製漆塗膜之光劣化皆發生於漆 酚苯環及其側鏈結構,此結果與Hong等人 (2000)所研究之精製漆光劣化機制相似。

不同TiO₂添加量精製漆塗膜於耐光試 驗192 hr之FTIR圖形皆相似,包括 3010 cm⁻¹吸收峰消失,而2924 cm⁻¹、2854 cm⁻¹、 990 cm⁻¹及730 cm⁻¹峰値下降,但1707 cm⁻¹ 吸收峰強度增加;而由FTIR光譜可看出, 以未添加TiO₂之2924 cm⁻¹、2854 cm⁻¹吸收峰 值強度下降最多,顯示未添加TiO₂者光劣 化最嚴重,而添加TiO₂即可改善,此與前 述耐光性測定結果一致。

4. 硬度、質量保留率與玻璃轉移溫度

不同TiO₂添加量精製漆之塗膜基本性 質如表3所示。在塗膜硬度方面,除添加量 5 phr者硬度最低為76 sec外,其餘不同TiO₂ 添加量精製漆塗膜硬度差異不大為82~85 sec,此係因TiO₂添加量達5 phr時精製漆塗 膜較不平整,測定könig擺振硬度時,因精 製漆塗膜摩擦力增加,擺振次數下降,硬 度値降低。在質量保留率中,未添加TiO₂ 精製漆塗膜具良好質量保留率達93.5%,而 含TiO₂精製漆塗膜之質量保留率則略上升 至93.7~94.9%;此係TiO₅填充於塗膜間隙,

衣3 个月110%冰加里相发涂之坐脵举尘性目	表3	不同TiO。添加量精製漆之塗膜基本	「性質
------------------------	----	-------------------	-----

TiO ₂ H (phr) (kč	TT	Manager	Τ.	Hot-cold-cycle test			
	(könig, sec)	(wt. %)	ſ℃)	60° Gloss (%)	Cycle test (cycles)	Gloss retention (%) ^a	
0	82 ± 1	93.5 ± 0.2	101	22 ± 1	> 20	113	
1	85 ± 2	93.7 ± 0.1	103	14 ± 0	> 20	100	
2	83 ± 1	93.6 ± 0.1	110	12 ± 0	> 20	111	
3	82 ± 1	94.9 ± 0.2	108	15 ± 0	> 20	123	
5	76 ± 1	94.5 ± 0.4	114	19 ± 0	> 20	104	

Table 3 Fundamental properties of refined oriental lacquer films with different amounts of TiO₂

^a The gloss retention was tested after 20 times of hot-cold-cycle test.

使含TiO₂精製漆塗膜質量損失較少,塗膜 質量保留率略為增加。又未添加TiO₂精製 漆塗膜之Tg值為101℃,隨TiO₂添加量增 加,Tg值上升達103~114℃,此係因TiO₂塡 充於塗膜分子結構中使其剛性增加,塗膜 Tg值提高,且隨添加量增加而Tg值有略增 之趨勢。

5. 光澤度與冷熱循環試驗

塗佈於柳杉試片之不同TiO₂添加量精 製漆塗膜之光澤度與冷熱循環試驗如表 3。未添加TiO₂之精製漆塗膜光澤度最高為 22%,而含TiO₂之精製漆塗膜光澤度皆低於 純精製漆者,如5 phr者光澤度為19%,此 係因添加TiO₂使塗膜平滑度下降,精製漆 塗膜光澤度降低。又不同TiO₂添加量精製 漆塗膜皆可通過20回冷熱循環試驗,且具 優良光澤度保留率約100~123%,顯示添加 TiO₂之精製漆塗膜仍具優良耐久性。

6. 耐衝擊性、附著性及抗彎曲性

含不同TiO₂添加量精製漆塗膜之耐衝 擊性如表4所示。未添加TiO₂精製漆塗膜 耐衝擊高度為10 cm,添加1~3 phr仍為10 cm,但添加量5 phr者則僅為5 cm,顯示添 加過多TiO₂使精製漆塗膜變脆。在塗膜附 著性方面,未添加及添加1 phr 之TiO₂者附 著性為10等級,具優良附著性,隨TiO₂添 加量增加,塗膜附著性漸差,至當添加量 達5 phr時,塗膜附著性則降為為6等級。在 塗膜抗彎曲性方面,未添加TiO₂精製漆之 塗膜可撓性佳,於2 mm鋼軸測試才出現裂 痕等缺陷,添加1 phr者亦具良好可撓性, 而添加2及3 phr者則鋼軸直徑皆為4 mm, 當添加量達5 phr時為8 mm,顯示塗膜抗彎 曲性隨TiO₂添加量增加而降低。

表4 不同TiO2添加量精製漆之塗膜機械性質

TiO ₂ (phr)	Impact resistance (300 g, cm)	Adhesion (grade)	Bending resistance (mm)	Tensile strength (MPa)	Elongation at break (%)	Strain energy (kJ)	Abrasion resistance (mg/1000 circles)
0	10	10	2	18.2 ± 0.7	11.7 ± 0.9	4.1 ± 0.4	27.8 ± 0.0
1	10	10	2	15.9 ± 0.8	10.7 ± 0.5	3.3 ± 0.3	26.8 ± 2.4
2	10	8	4	15.2 ± 0.8	10.3 ± 0.8	3.0 ± 0.3	26.1 ± 0.7
3	10	8	4	14.4 ± 1.4	10.3 ± 0.9	2.6 ± 0.5	20.5 ± 0.4
5	5	6	8	13.4 ± 0.9	9.6 ± 1.1	1.8 ± 0.3	17.1 ± 0.5

Table 4 Mechanical properties of refined oriental lacquer films with different amounts of TiO₂

7. 拉伸強度、破壞伸長率與耐磨性

不同TiO₂添加量精製漆塗膜拉伸強度 及耐磨性如表4所示。未添加TiO₂者之塗膜 拉伸強度及破壞伸長率分別為18.2 MPa和 11.7%,但添加TiO₂後塗膜拉伸強度降低, 且隨TiO₂添加量增加而遞減,例如由1 phr 之15.9 MPa降至添加5 phr之13.4 MPa,而 破壞伸長率皆較未添加TiO₂者為低,並以 添加5 phr者之破壞伸長率最差僅為9.6%, 此結果顯示添加TiO₂使精製漆塗膜變脆, 但仍以添加1 phr者具有較大拉伸強度與 破壞伸長率。又不同TiO₂添加量精製漆塗 膜應力-應變曲線圖面積之應變能(Strain energy),以未添加TiO₂精製漆者最高為4.1 kJ,而添加TiO₂者則低於未添加者且隨添加 量增加而降低,如5 phr者為1.8 kJ,此係因 添加TiO₂使塗膜拉伸強度及破壞伸長率下 降所致。

在耐磨性方面,未添加TiO₂精製漆塗 膜磨耗量為27.8 mg/1000轉,而含TiO₂者 之磨耗量則較未添加者為佳,且隨TiO₂添 加量增加而耐磨性更佳,如1 phr者為26.8 mg/1000轉,5 phr者為17.1 mg/1000轉。而 據Larsen-badse and Mathew (1969)指出應力-應變曲線下面積之應變能與耐磨耗性呈正 相關,但本試驗結果與之不相符。由劉元 富和王華明(2003)、王蓮芳和陳伯蠡(1991) 之研究得知,一般常見塗膜及金屬等材 料,於室溫情況下,塗膜或金屬材料之耐 磨耗性與其材料本身之硬度成正比,而本 試驗所添加TiO₂為金紅石型,其硬度相當 於7.0~7.5的莫式硬度(Mohs hardness),僅低 於金剛石、剛玉及黃玉三者材質,為多種 晶型TiO₂硬度最高者(咸才軍,2004;簡國 民等,2003;Linsebigler.*et al.*,1995),故當 精製漆塗膜添加高硬度金紅石型TiO₂可使 精製漆塗膜之耐磨性變佳。

8. TGA熱重分析

不同TiO₂添加量精製漆塗膜之熱重損 失曲線(TGA)如圖7,再將熱重損失微分得 其導數熱重損失曲線(DTG)如圖8所示;由 TGA分析得知,不同TiO₂添加量精製漆塗 膜於氦氣環境下之熱解可分為三階段,第 一階段於100℃左右發生,此係水分蒸發及 低分子量物質之揮發;第二階段之熱解約 發生於300℃左右,此係漆酚側鏈結構熱解 所致;第三階段之熱解發生於450℃左右, 此為精製漆塗膜三次元網狀主結構之熱解

Fig. 7 Thermogravimetric diagrams of refined oriental lacquer films with different amounts of TiO₂.

圖8 不同TiO2添加量精製漆之塗膜DTG圖。

所致(Niimura et al., 1996; 2006)。

將影響塗膜熱性質之第二及第三階 段熱重損失參數整理於表5。未添加TiO₂ 精製漆塗膜於第二階段最高熱分解溫度為 307℃,而含TiO₂者除1 phr仍維持307℃外, 其餘三者則略高於未添加者,如3 phr者為 308℃;在最大熱分解速率中,未添加TiO₂ 者為2.8%/min,而含TiO₂者除3 phr近似於未 添加者外,其餘3者之最大熱分解速率皆小 於未添加者,如1 phr者為2.4%/min。在第三 階段裂解中,未添加TiO₂者最高熱分解溫度 為441℃,而含TiO₂者則高於未添加者,並 隨添加量增加而上升,如由1 phr者之444℃ 上升至5 phr者448℃;由此可知,添加TiO₂

耒5	不同下()添加量特制漆涂腊之是车執分解速率温度及執分解速率
衣り	个内1102 添加里相表涂坐脵と取同於刀件还举 应反及然刀件还举

Table 5	Temperature of max	decomposition	rate (Tdmax)	and	derivative	weight	of refine	ed ori	ental
	lacquer films with diff	erent amounts o	of TiO	2						

TiO ₂ — (phr)		stage II	stage III		
	Tdmax (°C)	Derivative weight (%/mim)	Tdmax (°C)	Derivative weight (%/mim)	
0	307	-2.8	441	-6.7	
1	307	-2.4	444	-7.0	
2	310	-2.1	446	-7.4	
3	308	-2.8	447	-6.8	
5	308	-2.6	448	-6.7	

Fig. 8 Derivative thermogravimetric diagrams of refined oriental lacquer films with different amounts of TiO₂.

可增加塗膜耐熱性;而最大熱分解速率方面,未添加TiO2者為6.7%/min,而除添加5 phr者與未添加者相似外,其餘3者之最大裂 解速率皆稍高於未添加者。

IV、結論

為改善精製漆之耐光性,本研究添加 金紅石型TiO2至精製漆中,探討其不同添 加量對精製漆耐光性之改善效益及對塗料 與塗膜性質之影響。試驗結果發現,添加 少量TiO2(1phr)即可改善精製漆塗膜耐光 性,減少樹膠質析出,降低精製漆塗膜漆 酚苯環及其側鏈結構之光劣化現象,並保 留精製漆塗膜原有之色澤,同時且具較良 好之耐衝擊性、抗彎曲性、附著性及耐熱 性等均衡的塗膜性質。

V、謝誌

本研究承行政院科技部經費補助 (MOST 103-2313-B-005-011-MY3),特此申 謝。

VI、參考文獻

- 王蓮芳、陳伯蠡(1991)堆焊金屬耐磨性 與硬度關係的研究。焊接6:6-10。
- 林新賀(2001)功能性紡織品專題調查報告。中國紡織工業研究中心。雲林縣。 pp. 14-15、114-115、135-139。
- 咸才軍(2004)奈米建材。五南圖書出版 股份有限公司。台北市。pp. 153-186。
- 張上鎭、許富蘭(1994)塗料用光安定劑

的選用與發展。林產工業 13(1):198-214。

- 黃熹光(2000)抗紫外線織物之發展現況 及技術趨勢。化工資訊14:43-58。
- 簡國明、洪長春、吳典熹、王永銘、藍怡 平(2003)奈米二氧化鈦專利地圖及分 析。行政院國家科學委員會科學技術資 料中心。台北市。pp. 2-26。
- 劉元富、王華明(2003)激光熔敷Ti₅Si₃增 強金屬間化合物耐磨複合材料塗層組織 及耐磨性研究。摩擦學報23:10-13。
- 樊曉雷、王麗琴、趙西晨、高愚民、寇天 驕(2012)陝西出土明代漆棺製作手工 藝及材質研究。文物保護與考古科學 24:95-102。
- 大薮泰、阿佐見徹、小川俊夫(1998)促進耐侯性試験による漆塗膜の劣化過程。マテリアルライフ10:43-51。
- 永瀨喜助、宮腰哲雄(1998c)漆化學入門 講座(7)。塗裝と塗料 578:49-65。
- 神谷嘉美、西村信司(2013)黒色漆膜の 変色問題に関する基礎的研究-鉄と反 応させた黒漆の紫外線照射に伴う表面 変化。東京都立産業技術研究センター 研究報告8:88-91。
- Ahmed Mohamed, E. T., Y. Shu, S. Tsugio, G. Talal, A. H. Mansour and A. S. Mohamed (2010) Investigation of photocatalytic activity and UV-shielding properties for silica coated titania nanoparticles by solvothermal coating. J. Alloys Compd. 508: 1-4.
- Honda, T., R. Lu, R. Sakai, T. Ishimura and T. Miyakoshi (2008) Characterization and

comparison of Asian lacquer saps. Prog. Org. Coat. 61: 68-75.

- Hong, J. W., M. Y. Park, H. K. Kim and J. O. Choi (2000) UV-degradation chemistry of oriental lacquer coating containing hinder amine light stabilizer. Bull. Korean Chem. Soc. 21: 61-64.
- Jung, K. Y., Y. C. Kang and S. B. Park (1997) Photo-degradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis. J. Mater. Sci. Lett. 16: 1848-1849.
- Kamiya, Y., R. Lu, T. Kumamoto, T. Honda and T. Miyakoshi (2006) Deterioration of surface structure of lacquer films due to ultraviolet irradiation. Surf. Interface Anal. 38: 1311-1315.
- Kumanotani, J. (1998) Enzyme catalyzed durable and authentic oriental lacquer: a natural microgelprintable coating by polysaccharide-glycoprotein-phenolic lipid complexes. Prog. Org. Coat. 34: 135-146.
- Larsen-Badse, J. and K. G. Mathew (1969) Influence of structure on the abrasion resistance of a 1040 steel. Wear 14: 1995-2005.
- Li Y. and I. Takamasa (2004) Controlled onestep synthesis of nanocrystalline anatase and rutile TiO₂ powders by in-flight thermal plasma oxidation. J. Phys. Chem. 108: 15536-15542.
- Linsebigler, A. L., G. Lu and J. T. Yates (1995) Photocatalysis on TiO₂ surfaces : principles, mechanisms, and selected results.

Chem. Rev. 95: 735-758.

- Lu, R., S. Harigaya, T. Ishimura, K. Nagase and T. Miyakoshi (2004) Development of a fast drying lacquer based on raw lacquer sap. Prog. Org. Coat. 51: 238-243.
- Lu, R., T. Honda, T. Ishimura and T. Miyakoshi (2005) Study of a naturally drying lacquer hybridized with organic silane. Polym. J. 37: 309-315.
- Lu Q., J. Meng, D. Pang, C. Zhang and F. Ouyang (2015) Reaction and characterization of Co and Ce doped Mn/ TiO₂ catalysts for low-temperature SCR of NO with NH3. Catal. Lett. 145: 1500-1509.
- Manaia, E. B., R. C. K. Kaminski, M. A. Corrêa and L. A. Chiavacci (2013) Inorganic UV filters. Braz. J. Pharm. Sci. 49: 201-209.
- Niimura, N., T. Miyakoshi, J. Onodera and T. Higuchi (1996) Characterization of *Rhus* vernicifera and *Rhus succedanea* lacquer films and their pyrolysis mechanisms studied using two-stage pyrolysis-gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis 37: 199-209.
- Niimura, N. and T. Miyakoshi (2006) Structural study of oriental lacquer films during the hardening process. Talanta 70: 146-152.
- Wiechers, S., P. Biehl, C. Luven, M. Maier, J. Meyer, J. Münzenberg and C. Schulze-Isfort (2013) Titanium dioxide particle size vs. sun protection performance. Cosmet. Toilet. Mag. 128: 332-339.