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Abstract: Three new benzenoid derivatives, lawsoinermone (1), inermidioic acid (2), and inermic acid
(3) have been isolated from the aerial part of Lawsonia inermis, together with 11 known compounds
(4–14). The structures of three new compounds were determined through spectroscopic and MS
analyses. Compounds 1, 4–6, 13 and 14 were evaluated for inhibition of nitric oxide production in
LPS-stimulated product of nitrite in RAW 264.7 cells with IC50 values of 6.12, 16.43, 18.98, 9.30, 9.30
and 14.90 µg/mL, respectively.

Keywords: Lawsonia inermis; lawsoinermone; inermidioic acid; inermic acid; inhibitory activities
against NO production

1. Introduction

Lawsonia inermis Linn (Lythraceae) is a small tree or tall shrub, native to northern Africa, western and
southern Asia, and northern Australasia [1]. Lawsonia inermis is a folk herbal medicine used for skin diseases
and as a wound drug in Taiwan [2]. Isocoumarins [3], flavonoids [3,4], quinoids [4], triterpenoids [4],
naphthalene derivatives [4], coumarins [4], and their derivatives are widely distributed in plants of the
family Lythraceae. Many of these compound derivatives exhibit anti-inflammatory [3,5], antimycotic,
antifungal, antibacterial, and antiparasitic activities [6]. In our studies on the anti-inflammatory
constituents of Formosan plants, many species have been screened for in vitro inhibitory activity
on macrophage pro-inflammatory responses, and L. inermis has been found to be an active species.
The current phytochemical investigation of the aerial part of this plant has led to the isolation of three
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new compounds—lawsoinermone (1), inermidioic acid (2), and inermic acid (3)—along with 11 known
compounds. The structural elucidation of 1–3 and the anti-inflammatory activity of the isolates are
described herein.

2. Results and Discussion

2.1. Isolation and Structural Elucidation

The MeOH extract of the aerial part of Lawsonia inermis was concentrated to give a brown-green
residue, which was suspended in water and partitioned with EtOAc and H2O, successively.
The combined EtOAc soluble fraction was purified by repeated silica gel column chromatography
and normal phase semipreparative high-performance liquid chromatography (HPLC) to obtain 3 new
benzenoid derivatives—lawsoinermone (1), inermidioic acid (2), and inermic acid (3)—and 11 known
compounds 4–14 (Figure 1).
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Lawsoinermone (1) was isolated as light yellow oil with molecular formula C13H10O4 as
determined by HR-ESI-MS, showing an [M − H]− ion at m/z 229.0498 (calcd. for C13H9O4, 229.0495).
The IR absorption bands implied the presence of an OH (3442 cm−1), a γ-butyrolactone carbonyl group
(1772 cm−1), and a conjugated carbonyl group (1682 cm−1). The 1H-NMR spectrum of 1 showed the
presence of four mutually coupling aromatic protons [δ 7.46 (1H, br t, J = 7.8 Hz, H-8), 7.60 (1H, br
t, J = 7.8 Hz, H-9), 7.85 (1H, br d, J = 7.8 Hz, H-7), 8.55 (1H, br d, J = 7.8 Hz, H-10)], four mutually
coupling methylene protons [δ 2.79 (1H, m, H-4α), 2.95 (1H, m, H-4β), and 3.07 (2H, m, H-5)], and an
oxymethine proton [δ 6.07 (1H, s, H-1)], and a hydroxyl group [δ 3.88 (1H, br s, D2O exchangeable,
OH-1)]. The 1H-NMR spectrum of 1 was similar to 3,4,5,6-tetrahydro-8-methoxy-2H-benzo[6,7]
cyclohepta[b]furan-2-one (1a) [7], except that H-8, α-hydroxy-γ-butyrolactone moiety at C-3a and
C-10b, and a ketone at C-6 of 1 replaced OMe-8, γ-butyrolactone moiety at C-3a and C-10b, and H-6 of
1a [7]. This was supported by (1) NOESY correlations observed between H-1 (δH 6.07)/H-10 (δH 8.55),
H-8 (δH 7.46)/H-7 (δH 7.85), and H-8 (δH 7.46)/H-9 (δH 7.60), and (2) HMBC correlations observed
between H-1 (δH 6.07)/C-2 (δC 169.1), H-1 (δH 6.07)/C-10a (δC 127.2), H-4 (δH 2.79, 2.95)/C-6 (δC

201.0), H-8 (δH 7.46)/C-6a (δC 138.9), and H-8 (δH 7.46)/C-10 (δC 128.9). Furthermore, the absolute
configuration of 1 was proposed to be R by comparing specific rotation data [α]20

D +59.6◦ (c 1.20, CHCl3)
of 1 with those reported for (R)-3-hydroxydihydrofuran-2(3H)-one (1b) ([α]25

D +61.5◦ (c 1.15, CHCl3)) [8]
and (S)-3-hydroxydihydrofuran-2(3H)-one (1c) ([α]24

D −64.8◦ (c 1.82, CHCl3)) [9]. The full assignment
of 1H- and 13C-NMR resonances was confirmed by 1H-1H COSY, NOESY (Figure 2), DEPT, HSQC,
and HMBC (Figure 2) techniques. According to the evidence above, the structure of 1 was elucidated
as (R)-1-hydroxy-4,5-dihydro-1H-benzo[3,4]cyclohepta[1,2-b]furan-2,6-dione, named lawsoinermone.
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H-3′ ′ (δH 6.95)/H-2′ ′ (δH 7.49), and H-3′ ′ (δH 6.95)/H-7′ ′ ′ (δH 4.98) of 2. Compound 2 showed
the similar UV absorption [265 nm] and the similar chemical shift [δ 7.71] of H-7 and H-7′ ′ when
compared to the analogous (2E,3E)-2,3-bis(4-(benzyloxy)benzylidene)succinic acid [11], and the
(2E,3E)-configuration of 2 was thus established. On the basis of the above data, the structure of
2 was elucidated as (2E,3E)-2,3-bis(4-(4′-methoxybenzyloxy)benzylidene)succinic acid and named
inermidioic acid. This was further confirmed by the 1H-1H COSY, NOESY (Figure 3), DEPT, HSQC,
and HMBC (Figure 3) techniques.
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2.2. Structure Identification of the Known Isolates

The known isolates were readily identified by a comparison of physical and spectroscopic
data (UV, IR, 1H-NMR, 13C-NMR, and MS) with corresponding authentic samples or literature
values, and this included nine benzenoids, (E)-methyl 3-(4-hydroxyphenyl)acrylate (4) [14], (E)-ethyl
3-(4-hydroxyphenyl)acrylate (5) [15], caffeoyl alcohol (6) [16], ethyl 2-methylbenzoate (7) [17],
benzene-1,2-dicarboxylic acid (8) [18], monomethyl ortho-phthalate (9) [19], methyl 2-ethylbenzoate
(10) [20], methyl 2-methylbenzoate (11) [18], and ethyl 2-methylbenzoate (12) [21], and two
naphthoquinones—2-hydroxy-1,4-naphthoquinone (13) [21] and 1,4-naphthoquinone (14) [22].

2.3. Inhibitory Activity against Nitric Oxide Production

Nitric oxide (NO) is derived from the oxidation of L-arginine by NO synthase (NOS) and is a
mediator in the inflammatory response involved in host defense [23]. In inflammation and carcinogenesis
conditions, there is an increased production of NO by inducible NO synthase (iNOS) [24]. In this study,
the inhibitory activity toward NO production of 3 new (1–3) and 11 known compounds (4–14) was
evaluated by measurement of nitrite/nitrate in LPS-stimulated RAW 264.7 cells. To search for the
appropriate concentrations for the above assay, these 14 compounds were first tested for their cytotoxic
activity against the RAW 264.7 cells, and no significant cytotoxic activities were observed under all
tested concentrations. From the results of our anti-inflammatory tests, the following conclusions could
be drawn: (a) The high cell viability (>92%) indicated that the inhibitory activities of compounds
1, 4, 5, 6, 13 and 14 on LPS-induced NO production did not resulted from their cytotoxicities;
(b) Compounds 1, 6 and 13 exhibited inhibitory effects on lipopolysaccharides (LPS)-induced nitric
oxide production in RAW 264.7 cells with IC50 values of 6.12± 2.84, 9.30± 4.26, and 9.30± 4.68 µg/mL,
respectively (Table 1); (c) lawsoinermone (1) is the most effective among the isolated compounds, with
IC50 = 6.12 ± 2.84 µg/mL, against LPS-induced NO generation.

Table 1. Inhibitory effect of compounds 1–14 on overproduction of nitric oxide in LPS-stimulated RAW
264.7 cells.

Compounds IC50 (µg/mL) a

1 6.12 ± 2.84
2 >20
3 >20
4 16.43 ± 2.68
5 18.98 ± 3.48
6 9.30 ± 4.26
7 >20
8 >20
9 >20

10 >20
11 >20
12 >20
13 9.30 ± 4.68
14 14.90 ± 3.86

Indomethacin b 59.48 ± 1.22
a The IC50 values were calculated from the slope of the dose-response curves (SigmaPlot). Values are expressed as
average ± SEM (n = 3); b Indomethacin was used as a positive control.

3. Experimental Section

3.1. General

Optical rotations were measured using a Jasco P-1020 polarimeter (Jasco, Kyoto, Japan) in CHCl3.
Ultraviolet (UV) spectra were obtained with a Shimadzu Pharmaspec-1700 UV-Visible spectrophotometer
(Shimadzu, Kyoto, Japan). Infrared (IR) spectra (neat or KBr) were recorded on a Shimadzu IR prestige-21
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Fourier transform infrared spectrophotometer (Shimadzu, Kyoto, Japan). Nuclear magnetic resonance
(NMR) spectra—including correlation spectroscopy (COSY), nuclear Overhauser effect spectrometry
(NOESY), heteronuclear multiple-bond correlation (HMBC), and heteronuclear single-quantum coherence
(HSQC) experiments—were recorded on a Bruker DRX-500 FT-NMR (Bruker, Bremen, Germany)
operating at 500 MHz (1H) and 125 MHz (13C), respectively, with chemical shifts given in ppm (δ) using
tetramethylsilane (TMS) as an internal standard. Mass spectrometric (HR-EI-MS) data were generated
at the Mass Spectrometry Laboratory of the Chung Hsing University (Taichung, Taiwan). Column
chromatography was performed using LiChroCART Si gel (5 µM; Merck, Darmstadt, Germany), and
TLC analysis was carried out using aluminum pre-coated Si plates (Merck, Darmstadt, Germany) and
the spots were visualized using a UV lamp at λ = 254 nm.

3.2. Chemicals

The solvents used to open column isolation (Sephadex LH 20 and silica gel column) in the study,
such as n-hexane, chloroform, ethyl acetate, acetone, and methanol were as ACS grade. The HPLC
grade n-hexane, ethyl acetate, and acetone for HPLC isolation and the deuterated solvent for NMR
measurement (CDCl3, acetone-d6, or CD3OD) were purchased from the branch of Merck in Taipei,
Taiwan. LPS (endotoxin from Escherichia coli, serotype 0127:B8), Carr (type IV), indomethacin, MTT
(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and other chemicals were purchased
from Sigma Chemical Co. (St. Louis, MO, USA).

3.3. Plant Material

Lawsonia inermis was collected from Neipu Township, Pingtung, Taiwan, in February 2009 and
identified by I.-S. Chen (Emeritus Professor, School of Pharmacy, College of Pharmacy, Kaohsiung
Medical University, Kaohsiung, Taiwan). A voucher specimen (CMU-LIY-090711) was deposited at the
School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources.

3.4. Extraction and Isolation

The dried aerial part (5.0 kg) of Lawsonia inermis was extracted three times with MeOH (50 L
each) for seven days. The extract was concentrated under reduced pressure at 35 ◦C, and the residue
(440 g) was partitioned between EtOAc and H2O (1:1) to provide the EtOAc-soluble fraction (fraction
A; 132.5 g). Fraction A (132.5 g) was purified by column chromatography (CC) (6.0 kg of SiO2,
70–230 mesh; n-hexane/EtOAc/methanol gradient) to afford 14 fractions: A1–A14.

Fraction A3 (42.40 g) was re-separated by silica gel column chromatography (n-hexane:ethyl
acetate = 8:1) and semi-preparative normal phase HPLC (n-hexane:acetone = 10:1) to afford pure
compounds 1 (62.8 mg), 2 (157.3 mg), 3 (12.5 mg), 4 (16.4 mg), and 5 (5.3 mg). Fraction A5 (36.7 g) was
re-separated by silica gel column chromatography (n-hexane:ethyl acetate = 6:1) and semi-preparative
normal phase HPLC (n-hexane:acetone = 8:1) to afford pure compounds 6 (11.6 mg), 7 (32.4 mg),
and 8 (23.4 mg). Fraction A8 (22.4 g) was re-separated by Sephadex LH 20 column chromatography
(chloroform:methanol = 3:7), silica gel column chromatography (n-hexane:acetone = 8:3) and then
semi-preparative HPLC (chloroform:acetone = 6:1) to afford pure compounds 9 (10.2 mg), 10 (17.5 mg),
11 (15.0 mg), 12 (23.4 mg), 13 (33.4 mg), and 14 (24.5 mg).

Lawsoinermone (1): light yellow oil; [α]20
D +59.6◦ (c 1.20, CHCl3); UV (MeOH): λmax (log ε) 290 (4.34),

265 (4.24), 211 (4.34); IR (KBr) υmax: 3442, 1772, 1682, 1607, 1502 cm−1; 1H-NMR (CDCl3, 500 MHz):
δ 2.79 (1H, m, H-4α), 2.95 (1H, m, H-4β), 3.07 (2H, m, H-5), 3.88 (1H. br s, OH-1), 6.07 (1H. s, H-1), 7.46
(1H, br t, J = 7.8 Hz, H-8), 7.60 (1H, br t, J = 7.8 Hz, H-9), 7.85 (1H, br d, J = 7.8 Hz, H-7), 8.55 (1H, br d,
J = 7.8 Hz, H-10); 13C-NMR (CDCl3, 125 MHz): δ 22.4 (C-4), 41.2 (C-5), 95.9 (C-1), 126.8 (C-10b), 127.2
(C-10a), 128.9 (C-10), 129.5 (C-8), 129.8 (C-7), 132.5 (C-9), 138.9 (C-6a), 160.3 (C-3a), 169.1 (C-2), 201.0
(C-6); ESI-MS m/z 229 [M − H]−; HR-ESI-MS m/z 229.0498 [M − H]− (calcd. for C13H9O4, 229.0495).
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Inermidioic acid (2): yellow powder; UV (MeOH): λmax (log ε) 291 (4.52), 265 (4.59); IR (KBr) υmax:
3300~2500, 1679, 1607, 1508 cm−1; 1H-NMR (CDCl3, 400 MHz): δ 3.74 (6H, s, OMe-4′ and OMe-4′ ′ ′),
4.98 (4H, s, H-7′ and H-7′ ′ ′), 6.92 (4H, d, J = 8.4 Hz, H-3′, H-5′, H-3′ ′ ′, and H-5′ ′ ′), 6.95 (4H, d, J = 8.6 Hz,
H-3, H-5, H-3′ ′, and H-5′ ′), 7.33 (4H, d, J = 8.4 Hz, H-2′, H-6′, H-2′ ′ ′, and H-6′ ′ ′), 7.49 (4H, d, J = 8.6 Hz,
H-2, H-6, H-2′ ′, and H-6′ ′), 7.71 (2H, s, H-7 and H-7′); 13C-NMR (CDCl3, 100 MHz): δ 55.1 (OMe-4′ and
OMe-4′ ′ ′), 69.1 (C-7′ and C-7′ ′ ′), 113.8 (C-3′, C-5′, C-3′ ′ ′, and C-5′ ′ ′), 115.0 (C-3, C-5, C-3′ ′, and C-5′ ′),
125.8 (C-8 and C-8′ ′), 127.2 (C-1 and C-1′ ′), 128.5 (C-1′ and C-1′ ′ ′), 129.6 (C-2′, C-6′, C-2′ ′ ′, and C-6′ ′ ′),
131.4 (C-2, C-6, C-2′ ′, and C-6′ ′), 140.1 (C-7 and C-7′ ′), 159.1 (C-4′ and C-4′ ′ ′), 159.5 (C-4 and C-4′ ′),
167.8 (COOH); ESI-MS m/z 567 [M + H]+; HR-ESI-MS m/z 567.6049 [M + H]+ (calcd. for C34H31O8,
567.6051).

Inermic acid (3): amorphous powder; UV (MeOH): λmax (log ε) 321 (4.26), 294 (4.33), 242 (4.31), 220
(4.43); IR (KBr) υmax: 3300~2500, 1682, 1628, 1578, 1530 cm−1; 1H-NMR (CDCl3, 500 MHz): δ 3.83 (3H,
s, OMe-4′), 5.06 (2H, s, H-7′), 6.92 (2H, d, J = 7.8 Hz, H-3′ and H-5′), 7.01 (2H, d, J = 8.4 Hz, H-3 and
H-5), 7.36 (2H, d, J = 7.8 Hz, H-2′ and H-6′), 8.05 (2H, d, J = 8.4 Hz, H-2 and H-6), 10.68 (1H, br s,
COOH); 13C-NMR (CDCl3, 125 MHz): δ 55.3 (OMe-4′), 70.0 (C-7′), 114.1 (C-3′ and C-5′), 114.6 (C-3 and
C-5), 121.5 (C-1), 128.1 (C-1′), 129.3 (C-2′ and C-6′), 132.3 (C-2 and C-6), 159.7 (C-4′), 163.2 (C-4), 169.8
(COOH); EI-MS m/z 258 [M]+; HR-EI-MS m/z 258.0901 [M]+ (calcd. for C15H14O4, 258.0893).

3.5. Cell Culture

A murine macrophage cell line RAW264.7 (BCRC No. 60001) was purchased from the Bioresources
Collection and Research Center (BCRC, Hsinchu, Taiwan) of the Food Industry Research and
Development Institute (Hsinchu, Taiwan). Cells were cultured in plastic dishes containing Dulbecco’s
Modified Eagle Medium (DMEM, Sigma, St. Louis, MO, USA) supplemented with 10% fetal bovine
serum (FBS, Sigma) in a CO2 incubator (5% CO2 in air) at 37 ◦C and subcultured every three days at a
dilution of 1:5 using 0.05% trypsin-0.02% EDTA in Ca2+-, Mg2+-free phosphate-buffered saline (DPBS).

3.6. Cell Viability

Cells (2 × 105) were cultured in 96-well plate containing DMEM supplemented with 10% FBS for
one day to become nearly confluent. Then cells were cultured with compounds 1–14 in the presence
of 100 ng/mL LPS (lipopolysaccharide) for 24 h. After that, the cells were washed twice with DPBS
and incubated with 100 µL of 0.5 mg/mL MTT for 2 h at 37 ◦C testing for cell viability. The medium
was then discarded and 100 µL dimethyl sulfoxide (DMSO) was added. After 30-min incubation,
absorbance at 570 nm was read using a microplate reader (Molecular Devices, Sunnyvale, CA, USA).

3.7. Measurement of Nitric Oxide/Nitrite

NO production was indirectly assessed by measuring the nitrite levels in the cultured media and
serum determined by a colorimetric method based on the Griess reaction. The cells were incubated
with different concentration of samples in the presence of LPS (100 ng/mL) at 37 ◦C for 24 h. Then,
cells were dispensed into 96-well plates, and 100 µL of each supernatant was mixed with the same
volume of Griess reagent (1% sulfanilamide, 0.1% naphthylethylenediamine dihydrochloride and 5%
phosphoric acid) and incubated at room temperature for 10 min, the absorbance was measured at
540 nm with a Micro-Reader (Molecular Devices, SpectraMax® M2e, Sunnyvale, CA, USA). By using
sodium nitrite to generate a standard curve, the concentration of nitrite was measured from absorbance
at 540 nm.

3.8. Statistical Analysis

The data is expressed as means ± standard errors (SE). The IC50 values were calculated from
the dose curves using a non-linear regression algorithm (SigmaPlot 8.0; SPSS Inc., Chicago, IL, USA,
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2002). Statistical evaluation was carried out by one-way analysis of variance (ANOVA followed by
Scheffe’smultiple range tests).

Supplementary Materials: Supplementary materials are available online, Figures S1–S7: MS, 1D, and 2D-NMR
spectra for Lawsoinermone (1), Figures S8–S14: MS, 1D, and 2D-NMR spectra for Inermidioic acid (2),
Figures S15–S21: MS, 1D, and 2D-NMR spectra for Inermic acid (3).
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