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Antitumor agent yatein from Calocedrus 
formosana Florin leaf induces apoptosis 
in non-small-cell lung cancer cells
Shang‑Tse Ho1,2, Chi‑Chen Lin3, Tung‑Lin Wu4, Yu‑Tang Tung5,6,7* and Jyh‑Horng Wu1* 

Abstract 

Calocedrus formosana Florin is a softwood tree species with high economic value in Taiwan. Several bioactivities of the 
extracts of C. formosana have been reported; however, only one study focused on the anti‑non‑small‑cell lung cancer 
cells’ (anti‑NSCLC) effect of C. formosana extract and its active phytocompound. In the present study, the anti‑lung 
cancer effects of C. formosana leaf extract and its active derivative yatein were evaluated. The results revealed that the 
n‑hexane fraction of the crude extract exhibited the highest cytotoxicity potential against two non‑small‑cell lung 
cancer (NSCLC) cell lines, namely A549 and CL1‑5. Yatein, isolated from the n‑hexane fraction, exhibited the high‑
est cytotoxicity in the A549 and CL1‑5 cells. In addition, the CL1‑5 cells were more sensitive than the A549 cells after 
yatein treatment. Flow cytometry results revealed that yatein induced apoptosis in the two cell lines. Furthermore, 
expression of regulatory proteins related to apoptosis, such as caspase 3, caspase 8, caspase 9, and poly (ADP‑ribose) 
polymerase (PARP), increased in the A549 and CL1‑5 cells after yatein treatment. These findings provide insight into 
the in vitro anti‑lung tumor efficacy of yatein, thus rendering this phytocompound a potential anticancer lead com‑
pound for NSCLC treatment.
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Introduction
Globally, lung cancer is the second most common cancer 
among men and women, and causes approximately 1.6 
million deaths each year [1]. In 2012, up to 58% of lung 
cancer cases occurred in less developed [2]. Non-small-
cell lung cancer (NSCLC), including lung squamous cell 
carcinoma, lung adenocarcinoma, and large cell lung 
cancer, accounts for more than 85% of lung cancer cases 
[3, 4]. The major cause of lung cancer is tobacco smoking, 
and more than 80% of lung cancer cases in the United 
States are related to smoking [1]. Although lung squa-
mous cell carcinoma is strongly associated with smoking, 
lung adenocarcinoma is the most common form of lung 

cancer that is observed in patients who never smoke [5]. 
In addition to the high incidence rate, the 5-year survival 
rate of lung cancer is also lower than that of other com-
mon cancers [6]. Despite major advances in cancer thera-
peutics, efficient treatments to improve survival rates 
among patients with lung cancer are not currently avail-
able. Because of the therapeutic limitations of current 
conventional chemotherapeutic agents, the development 
of highly effective agents against lung cancer is necessary 
[7].

Recently, the cytotoxic effects of plant extracts have 
been widely studied [8, 9]. Calocedrus formosana is a 
popular softwood tree species with a high economic 
value in craft and construction in Taiwan [10]. In addition 
to its high industrial value, studies have reported multi-
ple bioactivities of the extract of C. formosana, including 
antimicrobial activity [11], antioxidant activity [12–14], 
cytotoxicity [15, 16], and immunoregulatory effects [17, 
18]. Yuan et al. [16] demonstrated that C. formosana leaf 
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extracts induce G2/M cell cycle arrest and apoptosis in 
human bladder cancer cells. In addition, Jayakumar et al. 
[19] reported that hinokitiol, a monoterpenoid isolated 
from C. formosana, inhibited the migration of A549 cells 
by suppressing the expression of matrix metalloprotein-
ases. The finding implied that the C. formosana extract 
and its derived phytocompounds might be potential can-
didate therapeutic agents against lung cancer.

Previous studies are mainly focused on the anticancer 
potential of C. formosana extract alone or its major com-
pound, hinokitiol [16, 19]. To our knowledge, thus far, no 
previous study focused on the screening of NSCLC apop-
tosis inducers from C. formosana leaf extract through 
bioactivity-guided isolation strategy. Therefore, in the 
present study, the antitumor activities of C. formosana 
leaf extract and its active derivative yatein were assessed 
in human NSCLC A549 and CL1-5 cells, and the antitu-
mor mechanisms of the active phytocompounds from C. 
formosana were examined.

Materials and methods
Plant materials, extraction, and isolation
C. formosana leaves were collected from the Hui-Sun 
experimental forest of National Chung Hsing University. 
The species was confirmed by Prof. Yen-Hsueh Tseng 
(Department of forestry, National Chung Hsing Univer-
sity). C. formosana leaves were soaked in methanol at 
room temperature twice for 1 week (each time) to obtain 
a methanolic extract. The filtered methanolic extract 
was concentrated and lyophilized using a rotary evapo-
rator and freeze-drying equipment, respectively. The 
dried samples were divided to various soluble fractions, 
including n-hexane (yield = 14.8%), ethyl acetate (EtOAc) 
(yield = 9.4%), n-butanol (n-BuOH) (yield = 20.1%), and 
water (yield = 47.6%) fractions, using liquid–liquid par-
tition. After a cytotoxicity prescreening, the n-hexane 
fraction of C. formosana was further fractionated into 10 
subfractions through column chromatography (Geduran 
Si-60, Merck, Darmstadt, Germany) using a gradient 
solvent system consisting of EtOAc and n-hexane. The 
cytotoxic phytocompound yatein was isolated and puri-
fied from subfraction 4 through semipreparative high-
performance liquid chromatography (HPLC) using a 
PU-2080 pump (Jasco, Tokyo, Japan) equipped with an 
RI-2031 detector (Jasco) and a 5 μm Luna silica column 
(250 × 10.0  mm internal diameter; Phenomenex, Tor-
rance, CA, USA). The mobile phase consisted of 30% of 
EtOAc and 70% of n-hexane (v/v), and the flow rate was 
4  ml/min. The structure of yatein was identified using 
nuclear magnetic resonance imaging (Bruker Avance 
400 MHz FTNMR Spectrometer, Rheinstetten, Germany) 
and Finnigan MAT-95S ESIMS (San Jose, CA, USA), and 
all spectral data were consistent with the literature [20]. 

Additionally, yatein was quantified by HPLC with the 
same condition as aforementioned. For the calibration 
curve analysis, the yatein stock solution was dissolved 
in 30/70 of EtOAc/n-hexane (v/v), and then diluted to 
obtain the desired concentrations (200, 300, 400, 500, and 
600  μg/ml) for the quantification. The calibration curve 
was plotted using linear regression method (peak areas 
versus compound concentrations).

Cell culture
Human NSCLC A549 and CL1-5 cells were purchased 
from Bioresource Collection and Research Center (BCRC 
60124) and provided by Dr. Jeremy J.-W. Chen (National 
Chung Hsing University, Taichung, Taiwan), respectively. 
A549 and CL1-5 cells were cultured in RPMI-1640 and 
Dulbecco’s modified Eagle’s medium (DMEM) medium 
(Gibco, Gran Island, NY, USA) supplemented with 10% 
(v/v) fetal bovine serum (Gibco) and a 1% (v/v) antibi-
otic–antimycotic agent (Gibco). The cells were incubated 
in a 37 °C humidified incubator containing 5%  CO2.

Cell viability assay
In this study, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium (MTT) (Sigma-Aldrich, St. Louis, MO, 
USA) test was used to evaluate cell viability. To meas-
ure the cytotoxicity of the extracts (test samples), the 
A549 and CL1-5 cells were seeded onto a 24-well plate 
(1 × 104 cells/well) and incubated overnight. After over-
night incubation, 1 ml of fresh medium containing vari-
ous concentrations of test samples [in 0.1% dimethyl 
sulfoxide (DMSO)] was added, and the cells were incu-
bated at 37 °C for various durations. The supernatant was 
removed after incubation and 200  μl of MTT reagent 
(1  mg/ml in serum-free medium) was added. The cells 
were incubated for 3  h at 37  °C. The MTT reagent was 
removed and 600  μl of DMSO was added to each well. 
The absorbance at 540  nm of each well was measured 
using a Tecan Sunrise ELISA reader (Tecan, Chapel Hill, 
NC).

Annexin V‑FITC binding assay
The apoptotic patterns of lung cancer cells were deter-
mined using an Annexin V-FITC Apoptosis Detection 
Kit (BD Bioscience, San Jose, CA, USA). The treated cells 
were harvested, washed twice, and resuspended with 2 μl 
of Annexin V-FITC and 2 μl of propidium iodide (PI) (BD 
Bioscience) in 100  μl of binding buffer (0.01  M HEPES, 
pH 7.4; 0.14 M NaCl; 2.5 mM  CaCl2) (BD Bioscience) for 
15 min at room temperature in the dark. The cells were 
immediately analyzed using flow cytometry (Accuri 5, 
Accuri Cytometers, Ann Arbor, MI, USA).
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Western blot analysis
The expression levels of proteins in the cells were deter-
mined through Western blot analysis as previously 
reported [8]. In this study, the primary antibodies were 
anti-β-actin (Santa Cruz, Dallas, TX, USA), anti-cleaved 
caspase 3 (Cell Signaling Technology, Danvers, MA, 
USA), anti-cleaved caspase 8 (Cell Signaling Technol-
ogy), anti-cleaved caspase 9 (Cell Signaling Technology), 
and anti-cleaved PARP (Cell Signaling Technology). An 
enhanced chemiluminescence (ECL) (Sigma-Aldrich) 
system was used for developing signals of the blots, 
which were analyzed using an LAS3000 system (Fujifilm, 
Tokyo, Japan). The experiments were at least duplicate.

Reactive oxygen species (ROS) assay
A549 and CL1-5 cells were seeded onto a 6-well plate 
(1 × 105 cells/well). After overnight incubation, cells were 
treated with 5 μM of yatein for 1, 3, 6, and 12 h. At each 
time point, the cells were harvested, centrifuged, and 
stained with 5  μM of 2′,7′-dichlorofluorescin diacetate 
(DCFH-DA) for 10 min at 4 °C. The ROS production lev-
els were measured as FL-1 fluorescence intensity by flow 
cytometer (BD Biosciences).

Statistical analysis
Data are expressed as mean ± standard deviation (SD). 
Statistical analysis was performed using the shuffle test or 
Student’s t test. A value of p < 0.05 was considered statis-
tically significant.

Results
Cytotoxicity of C. formosana leaf extract in human NSCLC 
A549 and CL1‑5 cells
To evaluate the cytotoxic potential of C. formosana 
leaf extract in human NSCLC cells, the cell viability of 
A549 and CL1-5 cells after treatment with a methanolic 
extract of C. formosana leaf and its derived soluble frac-
tions (n-hexane, EtOAc, n-BuOH, and water fraction) for 
24 h were determined using the MTT assay. The results 
revealed that at 5  μg/ml, the n-hexane and EtOAc frac-
tions exhibited higher cytotoxicity levels in the A549 and 
CL1-5 cells than the other fractions (Fig. 1a). As shown 
in Fig. 1b and c, both the n-hexane and EtOAc fractions 
exhibited cytotoxic effects on the human NSCLC cells; 
the half maximal inhibitory concentration  (IC50) values of 
the n-hexane fraction in the A549 and CL1-5 cells were 
23.1 and 1.2  μg/ml, respectively. The cytotoxic effects 
of the n-hexane and EtOAc fractions were compara-
ble; however, the yield of n-hexane fraction (14.8%) was 
higher than that of the EtOAc fraction (9.4%). Therefore, 

Fig. 1 Cytotoxic effect of Calocedrus formosana leaf extract. a Cell viability of A549 and CL1‑5 cells after treatment for 24 h with 5 μg/ml of 
methanolic extract and the derived soluble fractions. Cell viability of the b A549 and c CL1‑5 cells after treatment with the n‑hexane and EtOAc 
fractions of C. formosana leaf extract for 24 h. d The structure of yatein. The results represent the mean ± SD (n = 3). Different capital and lowercase 
letters indicate significant differences among each group in the A549 and CL1‑5 cells, respectively (p < 0.05). p values were calculated by one‑way 
ANOVA, followed by shuffle test
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the active phytocompounds were further isolated, puri-
fied, and identified from the n-hexane fraction. The 
n-hexane fraction was fractionated into ten subfractions 
through column chromatography (Si-60 gel). The results 
of the cytotoxicity screening of the subfractions revealed 
that subfraction 4 exhibited the highest growth inhibi-
tion in the A549 cells (Table 1). Based on the aforemen-
tioned results, the bioactivity-guided isolation principle 
was applied in this study, and the bioactive phytocom-
pound of subfraction 4 is yatein (Fig. 1d) which was iso-
lated and purified through HPLC using a normal phase 
system (Additional file  1: Fig. S1a). The yield of yatein 
was 11.1 ± 0.2 μg/g of dry leave sample based on the cali-
bration curve (R2 = 0.9963, Additional file 1: Fig. S1b). In 
addition, the purity of yatein was estimated higher than 
95% according to the 1H NMR results (Additional file 1: 
Fig. S1c).

Yatein induces cytotoxic effect in human NSCLC A549 
and CL1‑5 cells
The viabilities of the A549 and CL1-5 cells after treat-
ment with various concentrations of yatein for 24, 48, 
72, and 96 h are shown in Fig. 2a and b, respectively. The 
results revealed that yatein exhibited high cytotoxicity in 
the A549 and CL1-5 cells, and the  IC50 values of yatein 
in the A549 and CL1-5 cells were 3.5 and 1.9  μM after 
treatment for 72  h. The results revealed that yatein was 
a natural cytotoxic agent that strongly inhibited NSCLC 
cell growth. Therefore, the mechanism underlying the 
growth inhibitory effect of yatein in the A549 and CL1-5 
cells was further investigated in the present study.

Yatein induces apoptosis by enhancing apoptosis‑related 
protein expressions and ROS production in the A549 
and CL1‑5 cells
Additionally, we determined whether yatein inhibited the 
growth of the A549 and CL1-5 cells by inducing apopto-
sis in these two types of cells. To evaluate the apoptosis 
features of the A549 and CL1-5 cells, the yatein-treated 
cells were stained using the Annexin V/PI reagents and 
then analyzed using a flow cytometer. The results indi-
cated that the population in the early apoptosis stage of 
CL1-5 cells increased in a dose-dependent manner after 
yatein treatment for 24  h. As shown in Fig.  3, 15.1% of 
early apoptotic cells and 8.9% of late apoptotic CL1-5 
cells were observed after 5 μM yatein treatment for 24 h. 
By contrast, the A549 cells exhibited a different trend in 
the apoptosis stages compared with the CL1-5 cells after 
yatein treatment for 24  h, both of early and late apop-
totic cells were less than 5%. After treatment with yatein 
for 48  h, the populations of the A549 and CL1-5 cells 
in the early and late apoptosis stages exhibited a dose-
dependent increase (Fig. 3). The aforementioned findings 

Table 1 The weight fraction and  cytotoxicity of  n-hexane 
soluble subfractions from the leaf of C. formosana 

a Cell viability of A549 cells after treatment with 10 μg/ml of each subfraction 
for 24 h
b EtOAc/n-hexane
c MeOH/EtOAc

Subfractions Mobile phase 
(v/v)

Weight 
fraction (%)

Cell viability (%)a

1 5/95b 50.4 67.4 ± 15.2

2 10/90b 11.1 > 80

3 20/80b 3.4 > 80

4 20/80b 7.0 43.3 ± 2.6

5 30/70b 2.8 > 80

6 50/50b 2.4 > 80

7 70/30b 0.6 > 80

8 100/0b 1.1 > 80

9 10/90c 9.4 > 80

10 30/70c 11.8 > 80

Fig. 2 Cell viability of the a A549 and b CL1‑5 cells after treatment 
with various concentrations of yatein for 24–96 h. The results 
represent the mean ± SD (n = 3)
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indicate that yatein might have induced apoptosis in 
these two types of cells for 24 and 48 h treatment.

The expression of apoptosis-related proteins, includ-
ing cleaved PARP and cleaved caspases 9, 8, and 3, was 
analyzed after the A549 and CL1-5 cells treated with 
5 μM yatein for 0, 12, 24, and 48 h. As shown in Figs. 4 
and 5, the activation of cleaved PARP and cleaved cas-
pase 3, 8, and 9 increased in these two cell lines after 
yatein treatment for 48  h. The results implied that 
yatein induced caspase pathway activation and apopto-
sis in the A549 and CL1-5 cells. In addition, as shown 
in Fig. 6, yatein induced ROS formation in the NSCLC 

cells at various time points in these two cell lines. 
Accordingly, we found that the CL1-5 cells were more 
sensitive for the ROS production than the A549 cells 
after yatein treatment.

Discussion
The present study demonstrated for the first time 
the in  vitro anti-NSCLC effects of C. formosana leaf 
extract and its active derivative yatein. Our results 
indicated that the C. formosana leaf extracts exhibited 
high cytotoxicity  (IC50 values of the n-hexane fraction 
in the A549 and CL1-5 cells were 23.1 and 1.2  μg/ml, 

Fig. 3 Annexin V/PI staining of the A549 and CL1‑5 cells after yatein treatment for a 24 and b 48 h. The results represent the mean (n = 3)
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respectively) in the A549 and CL1-5 cells. We com-
pared the cytotoxic effects of the C. formosana leaf 
extract with those of potential anti-NSCLC plant 
extracts, such as Punica granatum  (IC50 value of A549 

cells > 150  μg/ml), Brachylaena ramiflora  (IC50 value 
of A549 cells = 20  μg/ml), Vernonia garnieriana  (IC50 
value of A549 cells = 79 μg/ml), Flacourtia indica  (IC50 
value of A549 cells = 100  μg/ml), and Rhododendron 

Fig. 4 Expression of apoptosis‑related proteins in the A549 cells after treatment with yatein (5 μM) for 12, 24, and 48 h. The bands were analyzed 
using the ImageJ software and normalized to β‑actin. All data presented are representatives of three independent experiments with similar results. 
The results represent the mean ± SD (n = 3). Asterisk indicates a significant difference compared with the control group (p < 0.05). p values were 
calculated by Student’s t test
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formosanum  (IC50 value of A549 cells = 80  μg/ml) 
[21–23]; the cytotoxic potential of the C. formosana 
leaf extract was higher than that of the aforementioned 
extracts. On the other hand, C. formosana leaf extracts 
also possessed cytotoxicity against bladder cancer cell 

growth  (IC50 value ≅ 10  μg/ml for TCCSUP, T24, and 
TSGH-8301 cells after treatment for 48 h) [16], suggest-
ing that C. formosana leaf extracts may exhibit broad-
spectrum cytotoxicity against various cancer cells.

Fig. 5 Expression of apoptosis‑related proteins in the CL1‑5 cells after treatment with yatein (5 μM) for 12, 24, and 48 h. The bands were analyzed 
using the ImageJ software and normalized to β‑actin. All data presented are representatives of three independent experiments with similar results. 
The results represent the mean ± SD (n = 3). Asterisk indicates a significant difference compared with the control group (p < 0.05). p values were 
calculated by Student’s t test
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Fig. 6 ROS levels of A549 and CL1‑5 cells after treatment with 5 μM yatein for 1, 3, 6, and 12 h. Black line: unstained cells, red line: control group, 
and green line: yatein treatment group. The results represent the mean ± SD (n = 3); different capital and lowercase letters indicate significant 
differences among each group in the A549 and CL1‑5 cells, respectively (p < 0.05). p values were calculated by one‑way ANOVA, followed by shuffle 
test
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As previously reported, some phytocompounds from 
C. formosana leaf extracts were able to inhibit cancer 
cell growth; for instance, hinokitiol inhibited A549 
cell growth at a high dosage (more than 20  μM) [19]. 
Additionally, we found that yatein exerted a stronger 
inhibitory effect on the growth of the A549 cells  (IC50 
value = 3.5 μM after treatment for 72 h) than did other 
lignans that have been reported to have anti-NSCLC 
growth effects in previous studies. The inhibitory 
effects of lignan compounds on NSCLC have been 
reported in previous studies. For example, Min et  al. 
isolated several lignans from Schisandra chinensis [24]. 
Among these phytochemicals, schisantherin C exhib-
ited the highest inhibitory effects on the A549 cell 
growth with an  IC50 value of 5.6 μM, followed by schi-
zandrin (20.7 μM) and gomisin N (21.1 μM). A lignan 
isolated from Endiandra anthropophagorum, (−)-dihy-
droguaiaretic acid, has been reported to have growth 
inhibitory effects on A549 cells with an  IC50 value of 
7.5 μM [25]. Furthermore, Ou et al. [26] reported that 
Z-isochaihulactone (a lignan isolated from Bupleu-
rum scorzonerifolium) displayed cytotoxicity in A549 
cells  (IC50 value = 7.5  μM). Based on the aforemen-
tioned reports, lignan compounds have notable poten-
tial as new cytotoxic lead compounds for treatment of 
NSCLC.

To evaluate the anti-NSCLC growth mechanism of 
yatein, the regulatory effect of yatein on the apoptosis-
related pathway was determined using flow cytometry 
and Western blot analysis. The result of Western blot 
analysis was consistent with the results of Annexin V/
PI staining; we found that prolonged yatein treatment 
was associated with an increase in apoptosis features 
in the cells, as observed through flow cytometry and 
Western blot analysis. Caspase family proteins play a 
vital role during the apoptotic process; the activated 
caspase proteins are able to trigger the programed cell 
death. Our finding indicated that yatein induced cas-
pase-dependent apoptosis and activated intrinsic and 
extrinsic apoptotic pathways in the A549 and CL1-5 
cells by activating expression of caspase 8 and caspase 
9 and then inducing caspase 3 and PARP protein acti-
vation. Additionally, yatein induced ROS formation in 
the NSCLC cells at various time points. ROS has multi-
ple functions in cell biology. At proper doses, ROS are 
able to regulate cell development functions, including 
cell cycle regulation, cell death, differentiation, migra-
tion, and proliferation. However, excess ROS pro-
duction would cause severe damage to biomolecules, 
and then induced apoptosis and/or necrosis [27–29]. 
Additionally, previous studies also showed that lignan 
compounds are able to induce apoptosis through pro-
ducing ROS in various cell types [30–34]. Thus, based 

on aforementioned, we speculated that ROS formation 
was involved in yatein-mediated cell death.

Conclusions
The present study demonstrated that C. formosana 
Florin leaf extract and its active phytocompound, 
yatein, suppressed NSCLC growth through the induc-
tion of apoptosis. According to the results from flow 
cytometry and Western blot analyses, we found that 
yatein initialized the apoptosis cascade in the intrin-
sic and extrinsic signaling pathways. Additionally, 
ROS production was also involved in the mechanism 
underlying yatein-mediated NSCLC growth inhibi-
tion. These findings provide insight into the in  vitro 
anti-lung tumor efficacy of yatein, thus rendering this 
phytocompound a potential anticancer lead compound 
for NSCLC treatment. However, the in  vivo anti-lung 
tumor effects of yatein are still needed for the future 
study.
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