DOI: 10.6561/FPI.2015.34(2).1

利用時間-溫度疊加原理預測竹材聚乳酸複合材料 之潛變行為

吴東霖¹ 吴志鴻²

【摘要】本研究利用桂竹(*Phyllostachys makinoi*)加工廢料及聚乳酸(Polylactic acid, PLA)製備竹材塑膠複合材料(Bamboo-plastic composite, BPC)。同時,利用長期潛變試驗與動態機械分析儀等,探討竹粒片添加量對複合材料潛 變行為之影響。試驗結果顯示,當竹粒片添加量低於 40 wt%時,活化能隨竹粒片添加量增加而增加。而當竹粒片添 加量達 60 wt%時,則活化能呈輕微減少現象。此外,潛變柔量亦隨竹粒片添加量增加而增加。另外,透過時間-溫度 疊加原理(Time-temperature superposition principle, TTSP)之短期加速潛變試驗模式,可有效預測 BPC 長時間潛變 行為及使用年限。其中,PLA 添加 40 wt%竹粒片所製備之複合材料,能有效降低材料的潛變現象。於試材 10%平均 破壞載重(Average breaking load, ABL)下,其使用年限較純 PLA 延長約 3.5 倍的時間。

【 關鍵詞】竹材塑膠複合材料、潛變行為、時間-溫度疊加原理、平均破壞載重、使用年限。

Time–Temperature Superposition Principle for the Predicting Creep Behavior of Bamboo–Polylactic Acid Composites

Tung-Lin Wu¹ Jyh-Horng Wu²

[Abstract] In this study, makino bamboo (*Phyllostachys makinoi*) residue and polylactic acid (PLA) were used as raw materials to manufacture bamboo–plastic composite (BPC). Effects of bamboo particle content on creep behavior of BPC were evaluated by long-term creep test and dynamic mechanical analyzer (DMA). These results showed that the activation energy of BPC increased with increasing bamboo particle (BP) loading up to 40 wt%; after that the activation energy of the composite slightly decreased at 60 wt% BP loading. Moreover, the compliance of BPC also increased with increasing BP loading. In addition, the time–temperature superposition principle (TTSP), a short-term accelerated creep test, can be simulated or predicted long-term creep behavior and lifetime of BPC. Accordingly, the BPC with 40 wt% BP could effectively reduce the creep defect, and its lifetime could be extended to 3.5 times as compared to the neat PLA under 10% average breaking load (ABL).

[Key words] Bamboo-plastic composite, Creep behavior, Time-temperature superposition principle, Average breaking load, Lifetime.

2國立中興大學森林系教授,通訊作者。

¹國立中興大學森林學系博士後研究員。

Postdoctoral Fellow, Department of Forestry, National Chung Hsing University.

Professor, Department of Forestry, National Chung Hsing University. Corresponding author, E-mail: eric@nchu.edu.tw.

I、前言

台灣因位處於熱帶及亞熱帶交替地區,屬東 南季風氣候型,氣候條件及生育地環境因子特 殊,非常適於竹類繁衍,也因此具有豐富的竹林 資源。此外,為了供應國內外需求頗甚的竹材製 品,南投地區設立許多竹材加工業,因此也產生 相當大量竹材殘料。然而,此殘料一般多作為焚 燒原料或任其腐朽,鮮少得到有計畫及有系統的 回收與再利用,其不僅耗費寶貴的天然森林資 源,更對環境造成莫大的衝擊。因此,利用廢棄 竹材殘料與聚乳酸(Polylactic acid,PLA)製備竹 材塑膠複合材料(Bamboo-plastic composite, BPC),除了能有效利用木質殘料及協助解決國內 廢棄物處理等問題之外,亦可達到資源再生及環 保之目標(吳東霖等,2011)。

另外,目前有關複合材料性質方面之研究, 多針對抗拉強度(Tensile strength)、楊氏模數 (Young's modulus)、破壞伸長率 (Elongation at break)及衝擊強度(Impact strength)等常見之強 度性質進行探討;相對的,對複合材料潛變行為 (Creep behavior) 之研究則較為缺乏 (Nuñez et al., 2004)。而複合材料之使用通常為長時間載重,其 最大承載力大多會逐年降低,當材料無法承受載 重時則會導致材料破壞。因此,若能成功預測材 料之使用年限(Lifetime),不僅能適時替換材料, 避免因潛變末期材料突然破壞所引發之危險外, 亦能充分運用材料之可利用期,降低淘汰可利用 材料所造成之浪費,故複合材料(特別是結構用 複合材料)長期潛變行為(Long-term creep behavior) 之探討與研究即顯得相當重要。然而, 一般複合材料於實際使用環境下進行潛變試驗 時,多需極為冗長的時間方能完成一完整之潛變 試驗;因此,學者專家即期望利用加速試驗的方 式,透過短期潛變試驗模式模擬長期潛變之結 果,藉此探討或預測材料之長期潛變性質變化。 而在眾多的短期加速潛變試驗方法中,時間-溫度 疊加原理 (Time-temperature superposition principle, TTSP)即為目前較為新穎且有效的方法 之一。TTSP 之理論基礎主要係建構在材料於較高 溫之環境下承受一固定載重時,其短時間內分子 鏈所產生之快速重排現象 (Reorientation) 應與常 溫下進行長期潛變所造成之緩慢的分子鏈重排現 象相似(Goertzen and Kessler, 2006; Tamrakar et al., 2011;Xu et al., 2011)。目前,國內針對 TTSP應 用於 BPC 潛變性質並無相關研究報告,因此實值 得針對此部份進行相關研究與探討。故本研究除 利用動態機械分析儀進行 BPC 短期加速潛變試驗 及評估竹粒片含量對 BPC 加速潛變性質之影響 外,並進一步利用 TTSP 試驗模式預測材料之使用 年限,以期建立一完整 BPC 或相關複合材料使用 年限之預測平台,同時並以複合材料實際長期潛 變行為檢視此預測模式之準確度。

II、材料與方法

- (I) 試驗材料
- 1. 桂竹刨屑

本試驗所用之試材,取自南投縣竹山地區竹 材加工廠之桂竹(*Phyllostachys makinoi*)刨屑。 經磨切機製成粒片後,隨即將所製得之桂竹粒片 置入 70°C 烘箱中乾燥 24 h 後,續以震動篩分機將 桂竹粒片進行粒徑分類,其中採用-30+60 mesh 桂 竹粒片作為後續複合材料製備之用。

2. 生物可分解型塑膠材料

本試驗所使用之生物可分解型塑膠材料為聚 乳酸,購自偉盟工業股份有限公司(台北),型號 為NCP0001,密度1250 kg/m³,熔流指數為4-8 g/10 min,熔融溫度則為 140-150℃。試驗前,將 PLA 顆粒利用圓盤式磨粉機進行磨粉處理後,續以篩 分機篩分出粒徑尺寸通過 20 mesh 之粉末,以供後 續複合材料製備之用。

3. 複合材料的製備

本試驗所製備之生物可分解型竹材粒片聚乳 酸複合材料,其竹材粒片尺寸為-30+60 mesh。以 不同竹材粒片/PLA 混合比(分別為 0/100、20/80、 40/60 及 60/40 wt%)製備複合材料,而複合材料 預設密度為 900 kg/m³,成板尺寸為 300 mm(長) × 200 mm(寬)×4 mm(厚)。依上述試驗所需重 量秤取絕乾竹材粒片、聚乳酸及潤滑劑,並將其 置於犁頭式混合機中攪拌,經 5 min 均匀攪拌後, 將其均匀灑入成型模具以抄製成板坯。另外,於 板坯中心層置入 K type 熱電耦線後,將板坯置入 熱壓機中,熱壓溫度為 180°C,於壓力 2.5 MPa 下 進行熱壓。當板坯中心溫度達 165°C 時,再將板 坯置於冷壓機中進行冷卻,使板坯中心溫度冷卻 至 40°C 以完成複合材料之製備。之後,將 BPC 置 於 20°C、65% RH 之恆溫恆濕室中調濕 7 天,以供 後續各項性質分析。

(II) 試驗方法

1. 短期加速潛變試驗(時間-溫度疊加模式)

本試驗參考 Goertzen 與 Kessler (2006)之試 驗方法,將試材(50 mm×5 mm×4 mm)置於動 態機械分析儀(Dynamic mechanical analyzer, DMA)中,以三點彎曲試驗模式(Three point bending mode)進行潛變試驗。試驗時,跨距為40 mm,並以試材抗彎強度之10%作為載重應力,於 25-75°C之溫度範圍內,每隔5°C進行1h之潛變 試驗及1h應力恢復期,使總試驗時程為22h。根 據下列式子計算各試驗溫度之潛變柔量(Creep compliance)後,再透過時間-溫度疊加原理,依 據下列阿瑞尼斯方程式(Arrhenius equation)計算 各潛變曲線於對數時間軸之水平位移因子(Shift factor),並使各潛變曲線疊加成單一條主曲線 (Master curve)(Chevali *et al.*, 2009):

 $J = 4bh^3D/PL^3$

(Creep compliance)

 $\log a_T = E_a (1/T - 1/T_{ref}) \times \log e/R$

(Arrhenius equation)

式中,J為潛變柔量(MPa⁻¹);b為試片寬度(mm); h為試片厚度(mm);D為潛變位移量(mm);P 為載重(N);L為跨距(mm); a_T 是水平位移因 子; T_{ref} 及T分別代表參考溫度(Reference temperature)(K)及試驗溫度(K),而 E_a 代表活 化能(J/mol);R則為氣體常數(8.314 J/K/mol) (Nuñez *et al.*, 2004;Tajvidi *et al.*, 2005;Xu *et al.*, 2010)。而TTSP試驗方法所得之主曲線,其強度 性質或變形量發生大幅變化之時間點,即為材料 進入加速變形之階段,亦即材料破壞之前兆,故 可用以推估該試驗材料之使用年限。

2. 長期潛變試驗

本試驗參考 Giannopoulos 與 Burgoyne(2012) 之試驗方法,將試材(80 mm × 16 mm × 4 mm) 置於潛變試驗架中(跨距 64 mm),以試材抗彎強 度之 10%作為載重應力,並於 20°C、65% RH 之 恆溫恆濕環境下,進行 200 天長期潛變試驗。

3. 統計分析

本試驗使用 SAS 統計系統進行變異數分析 (Analysis of variance, ANOVA),並透過 Scheffe 檢定(Scheffe test)評估各組間之差異性(信賴區 間為 95%)。

III、結果與討論

(1)以 TTSP 短期加速潛變試驗模式預測材料長期 潛變行為

彈性模數是材料在結構設計上之重要參數, 雖然彈性模數不會隨著時間增加而降低,但材料 在長時間固定載重下會產生應力鬆弛現象,且隨 著時間的增加而產生的變形,此現象則稱為潛 變。而木材塑膠複合材料因本身具有黏彈特性, 故材料易受時間及溫度的影響,而產生一種漸進 增加的變形,最後可導致漸進式的破壞(Gottron et al., 2014; Xu et al., 2001; Findley et al., 1976)。因 此,材料的長期潛變行為是一個非常重要的參 數,尤其在規劃產品安全係數需特別重視。故本 試驗可利用短期潛變試驗模式模擬長期潛變之結 果,藉此探討或預測材料之長期潛變行為及彈性 模數變化。另一方面,TTSP 之理論基礎主要係材 料於較高溫之環境下承受一固定載重時,其短時 間內分子鏈所產生之快速重排現象與常溫下進行 長期潛變所造成之緩慢的分子鏈重排現象相似 (Tamrakar et al., 2011; Dasappa et al., 2009)。因 此,本試驗先以 PLA 為試驗材料,利用 DMA 分 析材料在固定 10%平均破壞載重(Average breaking load, ABL)下不同試驗溫度之潛變行為, 藉以探討 TTSP 短期潛變試驗模式模擬長期潛變 行為之合適性。

圖 1 為 PLA 在 DMA 潛變試驗中不同試驗溫 度下潛變柔量之變化。由圖中可以得知,隨著試 驗溫度的升高,潛變柔量逐漸增高。而潛變柔量 代表單位應力下,其材料應變之變化量,故當材 料的變形量越大表示材料所測到的潛變柔量越 大,其彈性模數值則越低。其中,試驗溫度於45℃ 以下時,潛變柔量的變化較小;然而,當溫度升 至 50℃ 時,潛變柔量明顯增加,其值由 0.00042 MPa⁻¹增加至 0.00113 MPa⁻¹,此現象係因 PLA 玻 璃轉移溫度約為 60°C 所致。此外,每個溫度的短 期潛變試驗間隔時間約為 1 h,此部分為應力恢復 時間。為了使各潛變曲線疊合成單一主曲線,本 試驗係採用阿瑞尼斯方程式計算各短期潛變曲線 之水平位移因子。而在計算水平位移因子之前, 必須將試驗時間軸置換成對數時間軸,接著再使 各試驗溫度的時間位移至參考溫度(*T*ref)為 25℃ 的起始時間點。圖 2 為未水平位移潛變柔量與主 曲線之變化,由圖中可以得知,將所有試材於不 同試驗溫度所測得之短期潛變柔量以 25℃ 為參考 溫度,透過水平位移因子使不同溫度之潛變柔量 向右水平位移至相對應的潛變時間點時(如圖 2 之 50℃ 位移方式),即可獲得該試材之主曲線。

Fig. 1. Effects of creep test temperature on creep compliance of neat PLA.

圖 2、PLA 未位移潛變柔量數值與主曲線之變化 Fig. 2. Unshifted creep compliance data and corresponding master curve of neat PLA ($T_{ref} = 25^{\circ}$ C).

另一方面,水平位移因子與材料的活化能具 有相關性,因此,本試驗將針對 PLA 以 DMA 測 試材料於不同頻率(Frequency,f)下材料玻璃轉 移溫度(T_g)之變化。圖 3 為不同測試頻率對 PLA 損失正切之影響。由圖中可以得知,於頻率為 4 Hz 時,PLA 玻璃轉移溫度約為 66°C,且隨著測試頻 率的增加,PLA 之玻璃轉移溫度亦隨之上升。將 此相關性以頻率及玻璃轉移溫度作圖,取自然對 數值之頻率作為 Y 軸,而玻璃轉移溫度(K)之倒 數為 X 軸(如圖 4 所示),並依下列公式計算材料 之活化能(E_a),式中 R 為氣體常數(8.314 J/K/mol)。

圖 3、不同測試頻率對 PLA 損失正切之影響 Fig. 3. Effects of test frequency on the tan δ of neat PLA.

圖 4、不同測試頻率對 PLA 玻璃轉移溫度之影響 Fig. 4. Effects of test frequency on glass transition temperature of neat PLA.

表1、不同竹粒片添加量 BPC 之主曲線迴歸式

Table 1. Master curve equations of BPCs with different bamboo particle loadings

Sample	$y = y_0 + ae^{bx} + ce^{dx}$					D ²
	y 0	а	b	с	d	K-
PLA	0.0003	1.09×10 ⁻⁷	0.7607	5.66×10 ⁻¹⁶	3.0961	0.9991
BPC with 20 wt% bamboo	0.0008	4.25×10-6	0.5269	5.50×10 ⁻³⁷	7.4726	0.9943
BPC with 40 wt% bamboo	0.0008	2.82×10-6	0.5523	1.01×10 ⁻³⁹	7.8029	0.9949
BPC with 60 wt% bamboo	0.0008	7.00×10 ⁻⁴	0.0828	1.51×10 ⁻¹³	2.2292	0.9971

y is compliance and x is log t.

表 2、竹粒片添加量對 BPC 活化能之影響

 Table 2. Effects of bamboo particle loading on activation energy of BPC

Sample	E _a (kJ/mol)	R^2	
PLA	470.2	0.9919	
BPC with 20 wt% bamboo	472.7	0.9890	
BPC with 40 wt% bamboo	494.2	0.9932	
BPC with 60 wt% bamboo	481.7	0.9915	

$E_{\rm a} = -R \times \left(d(\ln(f))/d(1/T_{\rm g}) \right)$

將圖 4 所得斜率值代入上述公式計算後,PLA 其活化能為 470.2 kJ/mol。之後,再根據下列公式 及可計算出各試驗溫度之水平位移因子(log a_T)。

 $\log a_{\rm T} = E_{\rm a} \left(1/T - 1/T_{\rm ref} \right) / R \times \log e$

以參考溫度(T_{ref}) 25°C(298 K) 為例,當試驗溫 度(T)為 30°C(303 K)時,其水平位移因子(log a_T)為 –1.360。各試驗溫度之水平位移因子計算 完成後,進一步繪製 PLA 之潛變主曲線,其試驗 結果如圖 5 所示。由圖中可以發現,各試驗溫度 間之潛變柔量均具有良好之疊合現象。經回歸分 析後發現主曲線屬於指數成長(Exponential growth)曲線,且 R^2 高達 0.9991(如表 1 所示), 顯示以 TTSP 預測 PLA 長時間潛變行為係具有良 好的合適性。另外,由主曲線之試驗時間與潛變 柔量之關係可以推估,試材於 10% ABL 載重及 25℃之環境下,經30年後,其強度損失率達30%。

(II) 竹粒片添加量對 BPC 潛變行為之影響

為了瞭解不同竹粒片添加量對潛變行為之影響,本試驗針對竹粒片添加量為20 wt%、40 wt% 及 60 wt%之 BPC,透過 TTSP 進行長時間潛變行 為之預測。其中,表 2 為不同竹粒片添加量對 BPC 活化能之影響。由表中可以發現,當竹粒片添加 量低於 40 wt%時,活化能隨竹粒片添加量增加而 增加。而當添加量為 60 wt%時,其活化能則隨之 下降。此外,圖 6 為不同竹粒片添加量之 BPC, 其長時間潛變行為之預測主曲線。由圖中可以得 知,當竹粒片添加量低於 40 wt%時,隨著竹粒片 添加量的增加,其潛變柔量最大轉折區之相對應 時間點亦隨之增加。以 60 年長期潛變時間為例, PLA 與竹粒片添加量為 20、40 及 60 wt%之 BPC

圖 5、PLA 於不同試驗溫度之水平位移及主曲線 Fig. 5. Shifted creep compliance data and corresponding master curve of neat PLA ($T_{ref} = 25^{\circ}$ C).

圖 6、竹粒片添加量對 BPC 潛變柔量主曲線之影響

Fig. 6. Effects of bamboo particle loading on creep compliance master curve of BPCs.

圖 7、BPC (60 wt%竹粒片添加量)於 10%平均破 壞載重下其長期潛變變形量實測值與 TTSP 預測 值之比較

Fig. 7. Comparison of long-term creep displacement and TTSP predicted creep displacement for BPC with 60 wt% bamboo particle loading at 10% average breaking load.

(主曲線迴歸式如表 1 所示),其強度損失率分別 為 44.0%、41.8%、37.1%及 53.5%。顯示,於 PLA 基質中添加適量之竹粒片(低於 40 wt%),能有效 降低複合材料之潛變現象。另一方面,由圖中亦 可得知,竹粒片添加量為 40 wt%之 BPC 經 210 年 長期潛變後,其強度損失率僅達 44%。顯示,於 PLA 基質中添加 40 wt%竹粒片,較純 PLA 延長約 3.5 倍之使用年限。此結果與 Gregorova 等人(2011) 試驗結果相似,添加木質材料作為複合材料之填 料,有助於改善 PLA 之熱安定性,進而降低其複 合材料之潛變現象。另外,為了探討複合材料潛 變行為預測模式之準確度,本試驗以竹粒片添加 量為 60 wt%之 BPC,進行為期 200 天的長期潛變 試驗。圖 7 為 BPC(60 wt%竹粒片添加量)於 10% 平均破壞載重下潛變變形量 (Displacement) 實測 值與 TTSP 預測值之比較。由圖中可以得知,不論 TTSP 預測值或潛變實測值,其潛變變形量均隨潛 變時間的增加而逐漸增加。除了潛變初期 TTSP 預 測值與實測值之變形量差異較大之外,30 天後的 預測值與實測值的變化趨勢則相當接近。此結果 顯示,利用 TTSP 短期加速潛變試驗模式,可有效 預測 BPC 長期潛變行為。

IV、結論

本研究除針對竹材加工廠廢棄之竹殘料進行 生物可分解型塑膠複合材料之研製外,並評估竹 粒片含量對複合材料潛變行為之影響。試驗結果 得知,透過時間-溫度疊加原理(TTSP)之短期加 速潛變試驗模式,可有效預測 BPC 長時間潛變行 為及使用年限。而添加竹粒片能有效改善 PLA 之 潛變性質,竹粒片添加量為 40 wt%之 BPC,較純 PLA 延長約 3.5 倍之使用年限。故此分析技術將可 提供國內業界做為參考,以提升國內相關複合材 料之開發。綜合上述結論可以得知,竹材加工殘 料與聚乳酸可成功應用於天然高分子複合材料之 製備。將來若能順利推廣至相關產業,除能提高 竹材加工殘料的利用與減少資源浪費及環境衝擊 效益之外,亦能拓展及提升相關產業對無甲醛系 輕質綠建材之發展及應用潛能。

V、參考文獻

- 吳東霖、陳載永、吳志鴻(2011)竹材加工廢 料應用在生物可分解型塑膠複合材製備之研 究。中華林學季刊44:613-626。
- Chevali, V. S., D. R. Dean and G. M. Janowski (2009) Flexural creep behavior of discontinuous thermoplastic composites: Non-linear viscoelastic modeling and

time-temperature-stress superposition. Compos. Part A-Appl. S. 40:870–877.

- Dasappa, P., P. Lee-Sullivan and X. Xiao (2009) Temperature effects on creep behavior of continuous fiber GMT composites. Compos. Part A-Appl. S. 40:1071–1081.
- Findley, W. N., J. S. Lai and K. Onaran (1976) Creep and relaxation of nonlinear viscoelastic materials–with an introduction to linear viscoelasticity. NewYork: Dover Publications.
- Giannopoulos, I. P. and C. J. Burgoyne (2012) Accelerated and real-time creep and creep-rupture results for aramid fibers. J. Appl. Polym. Sci. 125:3856–3870.
- Goertzen, W. K. and M. R. Kessler (2006) Creep behavior of carbon fiber/epoxy matrix composites. Mater. Sci. Eng. A 421:217–225.
- Gottron, J., K. A. Harries and Q. Xu (2014) Creep behaviour of bamboo. Constr. Build. Mater. 66:79–88.
- Gregorova, A., M. Hrabalova, R. Kovalcik and R. Wimmer (2011) Surface modification of spruce wood flour and effects on the dynamic fragility of PLA/wood composites. Polym. Eng. Sci. 51:143–150.
- Nuñez, A. J., N. E. Marcovich and M. I. Aranguren (2004) Analysis of the creep behavior of polypropylene-woodflour composites. Polym. Eng. Sci. 44:1594–1603.
- Tajvidi, M., R. H. Falk and J. C. Hermanson (2005) Time-temperature superposition principle applied to a kenaf fiber/high density polyethylene composites. J. Appl. Polym. Sci. 97:1995–2004.
- Tamrakar, S., R. A. Lopez-Anido, A. Kiziltas and D. J. Gardner (2011) Time and temperature dependent response of a wood-polyproplyene composite. Compos. Part A-Appl. S. 42:834–842.
- Xu, B., J. Simonsen and W. E. Rochefort (2001) Creep resistance of wood-filled polysty-rene/high-density polyethylene blends. J. Appl. Polym. Sci. 79:418–425.

- Xu, Y., Q. Wu, Y. Lei and F. Yao (2010) Creep behavior of bagasse fiber reinforced polymer composites. Bioresour. Technol. 101:3280–3286.
- Xu, Y., S. Y. Lee and Q. Wu (2011) Creep analysis of bamboo high-density polyethylene composites: effect of interfacial treatment and fiber loading level. Polym. Compos. 32:692–699.